1 / 44

Relativity and Space Geodesy S. Pireaux UMR 6162 ARTEMIS , Obs. de la Côte d’Azur, Av. de Copernic, 06130 Grasse, Fr

Relativity and Space Geodesy S. Pireaux UMR 6162 ARTEMIS , Obs. de la Côte d’Azur, Av. de Copernic, 06130 Grasse, France sophie.pireaux@obs-azur.fr. IAU Commission 31: TIME AND ASTRONOMY, IAU General Assembly, Prague, 21 st August 2006. Outline of the speach.

melania
Download Presentation

Relativity and Space Geodesy S. Pireaux UMR 6162 ARTEMIS , Obs. de la Côte d’Azur, Av. de Copernic, 06130 Grasse, Fr

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Relativity and Space Geodesy S. Pireaux UMR 6162 ARTEMIS, Obs. de la Côte d’Azur, Av. de Copernic, 06130 Grasse, Francesophie.pireaux@obs-azur.fr IAU Commission 31: TIME AND ASTRONOMY, IAU General Assembly, Prague, 21st August 2006

  2. Outline of the speach [ Pireaux, Barriot, Rosenblatt, Acta A 2005] [ Pireaux et Barriot, Cel. Meca en prépa] II. Native relativistic approach wrt photon trajectory: laser-links (time transfer, frequency shift) a. Needed in: LISA, Tippo, T2L2, Galileo … b. General method for relativistic laser-links c. Illustration: LISA [B. Chauvineau, T. Régimbau, J.-Y. Vinet, S. Pireaux, Phys. Rev. D 72, 122003 (2005)] III. Caution with relativistic time-scales a. Relativistic time-scales b. Illustration: LISA I. Native relativistic approach wrt spacecraft trajectory : orbitography a. Needed in: precise planetary gravitational field modeling, orbitography b. Illustration: classical vsRMI prototype –Relativistic Motion Integrator- method

  3. I. Native relativistic approach wrt spacecraft trajectory : orbitography precise orbitography good model of perturbations relativistic gravitation: • Schwarzschild precession • geodesic ‘’ • Lense-Thirring‘’ • Include IAU 2000 standards regarding General Relativity: • GCRS metric- time transformation- Earth rotation- … Ia. Needed in: - precise planetary gravitational field modeling - orbitography CHAMP GRACE • A good planetary gravitational field model? GOCE STELLA or LAGEOS

  4. Ib. Illustration: classical method: numericaly integrate Newton’s second law of motion: RMI (Relativistic Motion Integrator) prototype method: numericaly integrate relativistic equation of motion (for a given metric): quadri-”force” with = proper time = Christoffel symbol wrt GCRS metric and first integral Simplectic integrator

  5. II. Native relativistic approach wrt photon trajectory: laser-links … 2008 2014-2020 2008-2012 T2L2 TIPO Project:CNES, ESA, NASA Implied:LISAFrance Goals:Time Delay Interferom. Project: CNES, ESA, CE Implied: GEMINI/ OCA Goals: positioning, … LISA GALILEO Project: CNES Implied: GEMINI/OCA Goals: metrology, geodesy, clocks synchro. … Implied:GEMINI, ARTEMIS, through SIR ILIADE of OCA Goal: metrology, planetodesy, … IIa. Need for relativistic laser links:

  6. LISA (Laser Interferometer Space Antenna) • GW detection through measurement of phase shift due to DL • good precision required on arm length: DL/L ~ 10-23 • laser frequency noise and optical bench noise >>> GW signal TDI pre-processing of data required TDI observables = time-delayed (wrt photon flight time tij) combination of data fluxes from = laser links, in close loops, in order to cancel bench and frequency noise • LISA = space GW detector complementary to ground detectors

  7. 6 . 5 x 10 km • equilateral L (t) 1 AU 20° 60° ij • 5 million km interdistance • at 20° behind • rotation of • rotation around gravitational relativistic effects • planets present . Photon travel time (tij) ? • double laser links geodesic motion classical doppler, Sagnac effect… station 3 station 2 . • planets and present station1 light deflection… • relativistic modeling of orbitography/laser links required: Coordinates Interdistance (L ) of stations ? ij • 3 (drag-free) stations3 test masses

  8. Emission: tA = 0 A, photon Reception: B, tB = ? • Equation to be solved in terms of quantities at tA: Photon orbit Receiving station orbit (flight time, « direction ») = 1 + 2 (normalization) = 3 unknowns IIb. General method for relativistic laser-links • Laser link:

  9. Proper- vs coordinate-time rates: • Proper vs coordinate time: • Motion in background metric gab = hab + hab in presence of gravitational sources (sce) : … with IAU2000 conventions

  10. Frequency shift = = relative difference between (if transfer from A to B) • frequency of photon, emitted by A, measured when received at B • proper frequency of photon when emitted by A (= proper frequency of identical oscillators aboard A and B) • Energy measured from spacecraft = where = spacecraft 4-velocity = photon 4-wave vector

  11. Order 1 : • terms in • Central body : presence, shape, orbital motion (during photon travel time) •  Other bodies : presence, orbital motion • orbital motion: • Order 3/2 : • terms in • Central body: rotation, orbital motion •  Other bodies: orbital motion • with = 1 for photons, for satellites • Order 2 : terms in • Contributions from gravitational sources (sce) to hab :

  12. IIc. Illustration: LISA, rotation around the Sun ~ 10-16 Sun rotation: Orbital motion of sces: Sun Jupiter Venus (<<) ~ 10-13 ~ 10-15 ~ 2 . 10-16 ~ 10-17 Presence: Orbital motion: ~ 2 . 10-12 ~ 10-18 Presence: Orbital motion: ~ 10-8 ~ 50 m s Photon flight: 5 . 10+6 km ~ 2 . 10-16 ~ 2 . 10-7 • Orders of magnitude :

  13. order 0 : where (+ sign : photon travels from A to B) evaluated at tA Classical • order 1/2 : where Classical kinematic terms • order 1 : • where Shapiro delay Kinematic terms Velocity change during photon flight time • LISA Flight time solution:

  14. 0 tAB = LAB/c 4 month period (rotation D around its center of mass) 6 month period 1 au périhélie 1 à l’aphélie 1 year period (rotation around the Sun) • Numerical estimates of geometric time delays in s over a year • tABorder 0 : amplitude ~ 48 000 km/c • « flexing » of triangle

  15. Numerical estimates of geometric time delays in s over a year • tABorder 0 :« flexing » of triangle, amplitude ~ 48 000 km/c ; • tABorder 1/2 : amplitude ~ 960 km/c ; • Doppler 1/2 tAB = fct [ nAB , vB(tA)/c ] 1/2 1/2 1/2 t23-t32… tAB is not symmetric (Sagnac+aberration term)

  16. Numerical estimates of geometric time delays in s over a year • tABorder 0 :« flexing » of triangle, amplitude ~ 48 000 km/c ; • tABorder 1/2 :spacecraft Doppler, amplitude ~ 960 km/c ; • tABorder 1 : less than 30 m/c. 0 1 tAB = fct[ tAB , nAB , vB(tA)/c, GM/c², xA(tA), xB(tA) ] relativistic gravitational Einstein, Doppler, Shapiro effects

  17. Order 1/2: Kinematic terms (Doppler) LISA configuration (spacecraft orbits: circular about CM +velocity proportional to orbital radius) => (reduction factor ~ L/R) • LISA Frequency shift solution: • Naive estimate:

  18. Einstein effect Velocity change during photon flight time Kinematic terms L<<R=> compensation (reduction factor ~ L/R) free fall + LISA configuration (~ 60°) => compensation • Order 1:

  19. LISACODE • collaboration of ARTEMIS (Côte d’Azur) – APC (Paris),in LISA FRANCE • aims at • includes without planets mission simulations Tests of TDI data pre-processing, TDI-ranging sensitivity curves relevant order of magnitude estimates … relativistic laser links (time transfer + freq. shift) classical orbito. coordinate time only • Laser link :Sun alone sufficient, but relativistic description of its field necessary • Ephemeris of stations :presence of planets necessary, to provide initial conditions for photon flight times • Time scales: careful with archives and coherence

  20. III. Caution with relativistic time-scales Satellite A regularly archives values of B A Satellite B regularly archives values of t t t Barycentric coordinate time (artificial scale) Proper time ofsatellite B (physical scale) Proper time ofsatellite A (physical scale) IIIa. Time scales

  21. A A t – t (s) dt/dt -1 A t – t (s) linear trend removed IIIb. Illustration: LISA • Numerical estimates • over a one year mission…

  22. Outline of the speach [ Pireaux, Barriot, Rosenblatt, Acta A 2005] [ Pireaux et Barriot, Cel. Meca en prépa] II. Native relativistic approach wrt photon trajectory: laser-links (time transfer, frequency shift) a. Needed in: LISA, Tippo, T2L2, Galileo … b. General method for relativistic laser-links c. Illustration: LISA [B. Chauvineau, T. Régimbau, J.-Y. Vinet, S. Pireaux, Phys. Rev. D 72, 122003 (2005)] III. Caution with relativistic time-scales a. Relativistic time-scales b. Illustration: LISA I. Native relativistic approach wrt spacecraft trajectory : orbitography a. Needed in: precise planetary gravitational field modeling, orbitography b. Illustration: classical vsRMI prototype –Relativistic Motion Integrator- method

  23. Other transparencies

  24. Satellite motion current description: Newton’s law + relativistic corrections + other forces Z Z Relativistic corrections on measurements Y (X,Y,Z) = planetary crust frame Planetary potential model Y Planetary rotation model X X (X,Y,Z) = quasi inertial frame Satellite motion Errors in relativistic corrections, time or space transformations… Mis-modeling in the planetary potential or the planetary rotation model better use relativistic formalism directly Geodesy: precise geophysics implies precise geodesy

  25. LAGEOS 1 CHAMP Geodesy examples: a high-, or respectively low-altitude satellite… Laser GEOdymics Satellite 1 Aims: - calculate station positions (1-3cm) - monitor tectonic-plate motion - measure Earth gravitational field - measure Earth rotation Design: - spherical with laser reflectors - no onboard sensors/electronic - no attitude control Orbit:5858x5958km, i = 52.6°, around Earth Mission: 1976, ~50 years (USA) CHAllenging Minisatellite Payload Aims: - precise gravity and magnetic field, their space and time variations Design: - laser reflector, GPS receiver - drift meter - magnetometer, star sensor, accelerometers Orbit: 454km initial, near polar, around Earth Mission: ~5 years (Germany)

  26. High satellite Low satellite Geodesy: orders of magnitude [m/s²]

  27. LAGEOS 1 a) Gravitational potential model for the Earth

  28. b) Newtonian contributions from the Moon, Sun and Planets with and LAGEOS 1

  29. c) Relativistic corrections LAGEOS 1

  30. , LAGEOS 1

  31. , LAGEOS 1

  32. Geodesy: a modern view… • Classical approach:“Newton” + relativistic corrections for precise satellite dynamics and time measurements. • Advantages: - Well-proven method. - Might be sufficient for current applications. • Drawbacks: - To be adapted to the adopted space-time transformations and to the level of precision of data • Alternative and pioneering effort: develop a satellite motion integrator in a pure relativistic framework. • Advantages: - To easily take into account all relativistic effects with “metric” adapted to the precision of measurements and adopted conventions. - Same geodesic equation for photons (light signals) massive particles (satellites without non-grav forces) - Relativistically consistent approach

  33. b) RMI goes beyond GINS capabilities: - (will) includes 1) IAU 2000 standard GCRS metric 2) IAU 2000 time transformation prescriptions 3) IAU 2000/IERS 2003 new standards on Earth rotation 4) post-newtonian parameters in metric and time transformations - separate modules allow easy update for metric, Earth potential model (EGM96)… prescriptions - contains all relativistic effects, different couplings at corresponding metric order. a) Method: GINS provides template orbits to validate the RMI orbits - simulations with 1) Schwarzschild metric => validate Schwarzschild correction 2) (Schwarzschild + GRIM4-S4) metric => validate harmonic contributions 3) Kerr metric => validate Lens-Thirring correction 4) GCRS metric with(out) Sun, Moon, Planets => validate geodetic precession (other bodies contributions) (…)

  34. ORBIT TAI J2000 (“inertial”) GRAVITATIONAL POTENTIAL MODEL FOR EARTH GRIM4-S4 ITRS (non inertial) INTEGRATOR TAI J2000 (“inertial”) PLANET EPHEMERIS DE403 For in and TDB c) diagram: GINS Earth rotation model with i=1,2,3 spatial indices

  35. GRAVITATIONAL POTENTIAL MODEL FOR EARTH GRIM4-S4 ORBIT ITRS (non inertial) TCG GCRS (“inertial”) METRIC MODEL IAU2000 GCRS metric INTEGRATOR GCRS (“inertial”) PLANET EPHEMERIS DE403 for in TDB d) diagram: RMI Earth rotation model with a=0,1,2,3 space-time indices

  36. satellite Center of Mass at (generalized relativistic eq.) - test-mass, shielded from non-gravitational forces, at (geodesic eq.) difference between the two equations at first order in : with evaluated at for the CM of satellite classical limit Geodesy: principle of accelerometers…

  37. Geodesy: bibliography Relativistic time transformations [Bize et al 1999] Europhysics Letters C, 45, 558 [Chovitz 1988] Bulletin Géodésique, 62,359 [Fairhaid_Bretagnon 1990]Astronomy and Astrophysics, 229, 240-247 [Hirayama et al 1988] [IAU 1992] IAU 1991 resolutions. IAU Information Bulletin 67 [IAU 2001a] IAU 2000 resolutions. IAU Information Bulletin 88 [IAU 2001b] Erratum on resolution B1.3. Information Bulletin 89 [IAU 2003] IAU Division 1, ICRS Working Group Task 5: SOFA libraries. http://www.iau-sofa.rl.ac.uk/product.html [IERS 2003] IERS website. http://www.iers.org/map [Irwin-Fukushima 1999] Astronomy and Astrophysics, 348, 642-652 [Lemonde et al 2001] Ed. A.N.Luiten, Berlin (Springer) [Moyer 1981a] Celestial Mechanics, 23, 33-56 [Moyer 1981b] Celestial Mechanics, 23, 57-68 [Moyer 2000] Monograph 2: Deep Space Communication and Navigation series [Soffel et al 2003] prepared for the Astronomical Journal, asro-ph/0303376v1 [Standish 1998]Astronomy and Astrophysics, 336, 381-384 [Weyers et al 2001] Metrologia A, 38, 4, 343

  38. Metric prescriptions [Damour et al 1991] Physical Review D, 43, 10, 3273-3307 [Damour et al 1992] Physical Review D, 45, 4, 1017-1044 [Damour et al 1993] Physical Review D, 47, 8, 3124-3135 [Damour et al 1994] Physical Review D, 49, 2, 618-635 [IAU 1992] IAU 1991 resolutions. IAU Information Bulletin 67 [IAU 2001a] IAU 2000 resolutions. IAU Information Bulletin 88 [IAU 2001b] Erratum on resolution B1.3. Information Bulletin 89 [IAU 2003] IAU Division 1, ICRS Working Group Task 5: SOFA libraries. http://www.iau-sofa.rl.ac.uk/product.html [IERS 2003] IERS website. http://www.iers.org/map [Klioner 1996] International Astronomical Union, 172, 39K, 309-320 [Klioner et al 1993] Physical Review D, 48, 4, 1451-1461 [Klioner et al 2003]astro-ph/0303377 v1 [Soffel et al 2003] prepared for the Astronomical Journal, asro-ph/0303376v1 RMI [GRGS 2001] Descriptif modèle de forces: logiciel GINS [Moisson 2000](thèse). Observatoire de Paris [McCarthy Petit 2003]IERS conventions 2003 http://maia.usno.navy.mil/conv2000.html.

  39. T2L2 (optical telemetry with 2 laser links) Principle of ground-space time transfer: • Date laser pulses: • Departure from ground station: TA • Arrival aboard: Tsat= TB • Echo return on ground: TC Clock Retro-reflectors • Follow evolution of time aboard wrt ground time: • Rebuild triplets (TA, Tsat, TC) • Compute ground-satellite delay: Detection Clock Laser telemetry station

  40. Principle of ground-ground time transfer: Common view On-board oscillator noise sx(0.1 s) Non-Common view On-board oscillator noise sx(t3)

  41. TIPO (Télémétrie Interplanétaire Optique) Radial distance measurement : centimetric over 1 day Angular distance measurement dq = 2 10-9 rd Method: Scientific objectives of TIPO: • Mesure PPN parameter g (Shapiro effect) • Planet Telemetry • Asteroid masses • Pioneer effect • … TIPO Telescope

  42. 6 5 x 10 km with ~ 1 for planets, << 1 for Sun . r Rorb. sce Orbital motion of sces during photon flight time:

  43. ~ 10-18 Earth rotation: orbital motion of sces : Sun Moon Jupiter ~ 10-15 ~ 10-15 ~ 10-18 ~ 10-19 ~ 10-11 Sun Moon Jupiter ~ 10-13 ~ 10-15 vol photon: 0.1 s s ~ 10-10 T2L2, rotation around the Earth: ~ 10-12 ~ 10-9 ~ 10-15

  44. UMR ARTEMIS, OCA: - B. Chauvineau: gravitation relativiste - S. Pireaux: gravitation relativiste, théories alternatives - T. Régimbau: modélisation d'ondes gravitationnelles - fond stochastique- - J-Y. Vinet: Time-Delay Interferometry Collaborations in LISA FRANCE LISA France: - APC, Paris 7 - ARTEMIS, OCA - CNES - IAP Paris - LAPP Annecy - LUTH Observatoire de Paris-Meudon - ONERA - Service d'Astrophysique CEA

More Related