280 likes | 401 Views
MGMT 276: Statistical Inference in Management Fall, 2013. Welcome. Please click in. My last name starts with a letter somewhere between A. A – D B. E – L C. M – R D. S – Z. Please hand in your correlation worksheets. Use this as your study guide.
E N D
MGMT 276: Statistical Inference in ManagementFall, 2013 Welcome
Please click in My last name starts with a letter somewhere between A. A – D B. E – L C. M – R D. S – Z Please hand in your correlation worksheets
Use this as your study guide By the end of lecture today9/17/13 Value of Peer Review Correlational methodology Strength of correlation versus direction Positive vs Negative correlation Strong, vs Moderate vs Weak correlation
Schedule of readings Before next exam: September 26th Please read chapters 1 - 4 & Appendix D & E in Lind Please read Chapters 1, 5, 6 and 13 in Plous Chapter 1: Selective Perception Chapter 5: Plasticity Chapter 6: Effects of Question Wording and Framing Chapter 13: Anchoring and Adjustment
Homework due – Thursday (September 19th) On class website: please print and complete homework worksheet # 4 Please double check – Allcell phones other electronic devices are turned off and stowed away
How old is the oldest person you know? Review of Homework Worksheet Homework Reports are now complete, stapled, and polished
Peer review Please exchange questionnaires with someone (who has same TA as you) and complete the peer review handed out in class You have 10 minutes Peer review is an important skill in nearly all areas of business and science. Please strive to provide productive, useful and kind feedback as you complete your peer review
Review of Homework Worksheet Hand in the peer review with the questionnaire *Hand them in together*
Overview Frequency distributions The normal curve Challenge yourself as we work through characteristics of distributions to try to categorize each concept as a measure of 1) central tendency 2) dispersion or 3) shape Mean, Median, Mode, Trimmed Mean Standard deviation, Variance, Range Mean Absolute Deviation Skewed right, skewed left unimodal, bimodal, symmetric
Another example: How many kids in your family? Number of kids in family 1 4 3 2 1 8 4 2 2 14 14 4 2 1 4 2 3 2 1 8
Measures of Central Tendency(Measures of location)The mean, median and mode Mean: The balance point of a distribution. Found by adding up all observations and then dividing by the number of observations Mean for a sample: Σx / n = mean = x Mean for a population: ΣX / N = mean = µ(mu) Measures of “location” Where on the number line the scores tend to cluster Note: Σ = add up x or X = scores n or N = number of scores
Measures of Central Tendency(Measures of location)The mean, median and mode Mean: The balance point of a distribution. Found by adding up all observations and then dividing by the number of observations Mean for a sample: Σx / n = mean = x 41/ 10 = mean = 4.1 Number of kids in family 1 4 3 2 1 8 4 2 2 14 Note: Σ = add up x or X = scores n or N = number of scores
Number of kids in family 1 4 32 18 42 2 14 How many kids are in your family? What is the most common family size? Median: The middle value when observations are ordered from least to most (or most to least) 1, 3, 1, 4, 2, 4, 2, 8, 2, 14 1, 2, 2, 4, 2, 1, 8, 3, 4, 14
Number of kids in family 1 3 1 4 2 4 2 8 2 14 Number of kids in family 1 4 32 18 42 2 14 How many kids are in your family? What is the most common family size? Median: The middle value when observations are ordered from least to most (or most to least) 1, 3, 1, 4, 2, 4, 2, 8, 2, 14 1, 2, 2, 4, 1, 2, 2, 4, 2, 1, 2, 1, 8, 8, 3, 4, 14 3, 4, 14 2.5 2 + 3 µ=2.5 If there appears to be two medians, take the mean of the two Median always has a percentile rank of 50% regardless of shape of distribution
Number of kids in family 1 3 1 4 2 4 2 8 2 14 How many kids are in your family? What is the most common family size? Median: The middle value when observations are ordered from least to most (or most to least)
Mode: The value of the most frequent observation Score f . 1 2 2 3 3 1 4 2 5 0 6 0 7 0 8 1 9 0 10 0 11 0 12 0 13 0 14 1 Number of kids in family 1 3 1 4 2 4 2 8 2 14 Please note: The mode is “2” because it is the most frequently occurring score. It occurs “3” times. “3” is not the mode, it is just the frequency for the value that is the mode Bimodal distribution: If there are two most frequent observations
What about central tendency for qualitative data? Mode is good for nominal or ordinal data Median can be used with ordinal data Mean can be used with interval or ratio data
Overview Frequency distributions The normal curve Challenge yourself as we work through characteristics of distributions to try to categorize each concept as a measure of 1) central tendency 2) dispersion or 3) shape Mean, Median, Mode, Trimmed Mean Skewed right, skewed left unimodal, bimodal, symmetric
A little more about frequency distributions An example of a normal distribution
A little more about frequency distributions An example of a normal distribution
A little more about frequency distributions An example of a normal distribution
A little more about frequency distributions An example of a normal distribution
A little more about frequency distributions An example of a normal distribution
Measure of central tendency: describes how scores tend to cluster toward the center of the distribution Normal distribution In all distributions: mode = tallest point median = middle score mean = balance point In a normal distribution: mode = mean = median
Measure of central tendency: describes how scores tend to cluster toward the center of the distribution Positively skewed distribution In all distributions: mode = tallest point median = middle score mean = balance point In a positively skewed distribution: mode < median < mean Note: mean is most affected by outliers or skewed distributions
Measure of central tendency: describes how scores tend to cluster toward the center of the distribution Negatively skewed distribution In all distributions: mode = tallest point median = middle score mean = balance point In a negatively skewed distribution: mean < median < mode Note: mean is most affected by outliers or skewed distributions
Mode: The value of the most frequent observation Bimodal distribution: Distribution with two most frequent observations (2 peaks) Example: Ian coaches two boys baseball teams. One team is made up of 10-year-olds and the other is made up of 16-year-olds. When he measured the height of all of his players he found a bimodal distribution
Thank you! See you next time!!