1 / 19

Cellular Respiration Stage 1: Glycolysis

Cellular Respiration Stage 1: Glycolysis. What’s the point?. The point is to make ATP !. ATP. glucose      pyruvate. 6C. 3C. 2 x. Glycolysis. Breaking down glucose “ glyco – lysis ” (splitting sugar) ancient pathway which harvests energy where energy transfer first evolved

Download Presentation

Cellular Respiration Stage 1: Glycolysis

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Cellular RespirationStage 1:Glycolysis

  2. What’s thepoint? The pointis to makeATP! ATP

  3. glucose      pyruvate 6C 3C 2x Glycolysis • Breaking down glucose • “glyco – lysis” (splitting sugar) • ancient pathway which harvests energy • where energy transfer first evolved • transfer energy from organic molecules to ATP • still is starting point for ALL cellular respiration • but it’s inefficient • generate only2 ATP for every 1 glucose • occurs in cytosol

  4. Evolutionary perspective • Prokaryotes • first cells had no organelles • Anaerobic atmosphere • life on Earth first evolved withoutfree oxygen (O2) in atmosphere • energy had to be captured from organic molecules in absence of O2 • Prokaryotes that evolved glycolysis are ancestors of all modern life • ALL cells still utilize glycolysis

  5. enzyme enzyme enzyme enzyme enzyme enzyme enzyme enzyme ATP ATP 4 2 4 2 2 ADP NAD+ ADP 2Pi 2 2H 2Pi glucose C-C-C-C-C-C Overview 10 reactions • convert glucose (6C)to 2 pyruvate (3C) • produces:4 ATP & 2 NADH • consumes:2 ATP • net yield:2 ATP & 2 NADH fructose-1,6bP P-C-C-C-C-C-C-P DHAP P-C-C-C G3P C-C-C-P pyruvate C-C-C DHAP = dihydroxyacetone phosphate G3P = glyceraldehyde-3-phosphate

  6. Glycolysis summary endergonic invest some ATP ENERGY INVESTMENT -2 ATP G3P C-C-C-P exergonic harvest a little ATP & a little NADH ENERGY PAYOFF 4 ATP like $$in the bank • net yield • 2 ATP • 2 NADH NET YIELD

  7. 1st half of glycolysis (5 reactions) CH2OH Glucose “priming” O Glucose 1 ATP hexokinase • get glucose ready to split • phosphorylate glucose • molecular rearrangement • split destabilized glucose ADP CH2 O P O Glucose 6-phosphate 2 phosphoglucose isomerase CH2 P O CH2OH O Fructose 6-phosphate 3 ATP phosphofructokinase P O CH2 CH2 O P O ADP Fructose 1,6-bisphosphate aldolase 4,5 H O CH2 P isomerase C O C O Dihydroxyacetone phosphate Glyceraldehyde 3 -phosphate (G3P) CHOH CH2OH CH2 O P NAD+ Pi NAD+ Pi 6 glyceraldehyde 3-phosphate dehydrogenase NADH NADH P O O CHOH 1,3-Bisphosphoglycerate (BPG) 1,3-Bisphosphoglycerate (BPG) CH2 O P

  8. 2nd half of glycolysis (5 reactions) DHAP P-C-C-C G3P C-C-C-P Energy Harvest • NADH production • G3P donates H • oxidizes the sugar • reduces NAD+ • NAD+ NADH • ATP production • G3P    pyruvate • PEP sugar donates P • “substrate level phosphorylation” • ADP  ATP Pi Pi NAD+ NAD+ 6 NADH NADH 7 ADP ADP O- phosphoglycerate kinase C ATP ATP CHOH 3-Phosphoglycerate (3PG) 3-Phosphoglycerate (3PG) CH2 P O 8 O- phosphoglycero-mutase O C H C O P 2-Phosphoglycerate (2PG) 2-Phosphoglycerate (2PG) CH2OH O- 9 H2O H2O enolase C O O C P Phosphoenolpyruvate (PEP) Phosphoenolpyruvate (PEP) CH2 O- 10 ADP ADP C O pyruvate kinase ATP ATP C O CH3 Pyruvate Pyruvate

  9. O- 9 H2O H2O enolase C O O C P Phosphoenolpyruvate (PEP) Phosphoenolpyruvate (PEP) CH2 O- 10 ADP ADP C O pyruvate kinase ATP ATP C O CH3 Pyruvate Pyruvate Substrate-level Phosphorylation • In the last steps of glycolysis, where did the P come from to make ATP? • the sugar substrate (PEP) • P is transferred from PEP to ADP • kinase enzyme • ADP  ATP ATP

  10. 2 ATP 2 ADP 2 NAD+ 4 ADP ATP 4 2 Energy accounting of glycolysis • Net gain = 2 ATP + 2 NADH • some energy investment (-2 ATP) • small energy return (4 ATP + 2 NADH) • 1 6C sugar 2 3C sugars glucose      pyruvate 6C 3C 2x

  11. O2 O2 O2 O2 O2 3C 2x Is that all there is? • Not a lot of energy… • for 1 billon years+ this is how life on Earth survived • no O2 = slow growth, slow reproduction • only harvest 3.5% of energy stored in glucose • more carbons to strip off = more energy to harvest glucose     pyruvate 6C

  12. DHAP G3P NAD+ Pi NAD+ Pi NADH NADH 1,3-BPG 1,3-BPG Pi Pi NAD+ NAD+ 6 NADH NADH 7 ADP ADP ATP ATP 3-Phosphoglycerate (3PG) 3-Phosphoglycerate (3PG) 8 2-Phosphoglycerate (2PG) 2-Phosphoglycerate (2PG) 9 H2O H2O Phosphoenolpyruvate (PEP) Phosphoenolpyruvate (PEP) 10 ADP ADP ATP ATP Pyruvate Pyruvate But can’t stop there! • Going to run out of NAD+ • without regenerating NAD+,energy production would stop! • another molecule must accept H from NADH • so NAD+ is freed up for another round raw materialsproducts Glycolysis glucose + 2ADP + 2Pi + 2 NAD+2pyruvate+2ATP+2NADH

  13. recycleNADH How is NADH recycled to NAD+? without oxygen anaerobic respiration “fermentation” with oxygen aerobic respiration Another molecule must accept H from NADH pyruvate NAD+ H2O CO2 NADH NADH O2 acetaldehyde NADH acetyl-CoA NAD+ NAD+ lactate lactic acidfermentation which path you use depends on who you are… Krebs cycle ethanol alcoholfermentation

  14. pyruvate  ethanol + CO2 3C 2C 1C pyruvate  lactic acid NADH NADH NAD+ NAD+ 3C 3C Fermentation (anaerobic) • Bacteria, yeast back to glycolysis • beer, wine, bread • Animals, some fungi back to glycolysis • cheese, anaerobic exercise (no O2)

  15. pyruvate  ethanol + CO2 3C 2C 1C NADH NAD+ recycleNADH bacteria yeast Alcohol Fermentation back to glycolysis • Dead end process • at ~12% ethanol, kills yeast • can’t reverse the reaction

  16. O2 pyruvate  lactic acid NADH NAD+ 3C 3C recycleNADH animalssome fungi Lactic Acid Fermentation  back to glycolysis • Reversible process • once O2 is available, lactate is converted back to pyruvate by the liver

  17. O2 O2 Pyruvate is a branching point Pyruvate fermentation anaerobicrespiration mitochondria Krebs cycle aerobic respiration

  18. What’s thepoint? The pointis to makeATP! ATP

  19. H+ H+ H+ H+ H+ H+ H+ H+ + P H+ And how do we do that? • ATP synthase • set up a H+ gradient • allow H+ to flow through ATP synthase • powers bonding of Pi to ADP ADP + PiATP ADP ATP But… Have we done that yet?

More Related