1 / 42

Double Beta Decay review

Double Beta Decay review. Fabrice Piquemal Laboratoire Souterrain de Modane (CNRS/IN2P3-CEA/DSM) and CENBG , University Bordeaux 1 CNRS/IN2P3. NNN 2010, Toyama Dec ,14-16 2010. Thanks to: G. Gratta, S ., A. Giuliani , S. Schoenert ,

melody
Download Presentation

Double Beta Decay review

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Double Beta Decayreview Fabrice Piquemal Laboratoire Souterrain de Modane (CNRS/IN2P3-CEA/DSM) and CENBG, University Bordeaux 1 CNRS/IN2P3 NNN 2010, Toyama Dec,14-16 2010 Thanks to: G. Gratta, S., A. Giuliani, S. Schoenert, T. Kishimito, M. Nomachi, K. Zuber, M. Chen, K. Inoue

  2. Double Beta decay: physics case (A,Z)  (A,Z+2) + 2e- - Leptonicnumber violation • - Nature of neutrino : Dirac (nn) or Majorana (n=n) • - Absolute neutrino mass and neutrino mass hierarchy • Right-handedcurrent interaction • CP violation in leptonicsector • Search of Supersymmetry and new particles

  3. Double Beta decays Single beta decayforbidden (energy) or stronglysuppressed by large angular momentum change Decay to ground state or excited states bb bb(0n) bb(2n) e- e- e- e- n n DL =2 2nd order process of weak interaction Already observed for several nuclei bb(0n) Majorana neutrino (n=n)

  4. Neutrinoless Double Beta decay <mn> Light neutrino exchange <mn>,<l>,<h> (V+A) current <gM> Majoron emission l’111,l’113l’131,….. SUSY Nuclear matrix element Phase space factor -1 5 T1/2= F(Qbb,Z)|M|2<mn>2 Effective mass: <mn>= m1|Ue1|2 + m2|Ue2|2.eia1 + m3|Ue3|2.eia2 |Uei|: mixingmatrixelement a1 et a2: Majorana phase (A,Z) (A,Z+2) + 2 e- DiscoveryimpliesDL=2 and Majorana neutrino Processparameters

  5. bb(0n) observables bb(0n) bb(2n) Electron energysum From G. Gratta Mass mechanism Mass mechanism RHC RHC Angular distribution Ee1 – Ee2 distribution 150Nd distribution s arxiv: 1005.1241v1 [hep-ex]

  6. Whysomanyexperiments or projects ?

  7. Double beta decay isotopes

  8. NuclearMatrixElement arXiv:1008.5260v2 : Tomás R. Rodríguez, G. Martinez-Pinedo

  9. Background components 2.614 MeV Highest gamma-ray fromnaturalradioactivity 100Mo 82Se 150Nd 96Zr 48Ca 76Ge 130Te 76Xe 2 3 4 5 Qbb MeV Natural radioactivity (40K, 60Co,234mPa, external214Bi and 208Tl…) 214Bi and Radon, 208Tl (2.6 MeV g line) and Thoron, gfrom (n,g) reaction and muons bremstrahlung + bb(2n) for tracko-calo or calorimeterwithmodestenergyresolution + for pure calorimeterSurface or bulk contamination in aemitters,cosmogenic production

  10. Experimentalsensitivity M . t e A  (y) NBckg. DE <mn >  M1/4 M: masse (g) e : efficiency KC.L.: Confidence level N: Avogadro number t: time (y) NBckg: Background events (keV-1.g-1.y-1) DE: energyresolution (keV) Calorimeter Semi-conductors Bolometers Source = detector Tracko-calo Source  detector Xe TPC Source = detector Calorimeter (Loaded) Scintillator Source = detector b b b b b b b b e, M NBckg, isotope choice e,M, (NBckg) e, DE

  11. Calorimeter vs Tracko-calo Tracko-calo Calorimeter High background rejection Modest energy resolution High energy resolution Modest background rejection bb(0n) bb(0n) keV bb(0n) bb(0n) keV MeV

  12. Whysomanyexperiments or projects ? • Whatisthe most favorable isotope and the best technique ? • Phase space factor: 48Ca, 150Nd, 96Zr • Nuclearmatrixelement not yetreliablepredictions • Backgrounds > 2,6 MeV 48Ca, 150Nd, 96Zr, 100Mo, 82Se, 116Cd • > 3.2 MeV (radon) 48Ca, 150Nd, 96Zr • Enrichment:130Te (Natural isotopicabundance 34%) • 136Xe(gaz, easy to enrich) • Best techniques : • Bolometers, Ge diodes: energyresolution130Te (82Se, 116Cd), 76Ge • Tracko-calo : background rejection82Se, (48Ca, 150Nd) • TPC Xe: background rejection if tagging of Ba 136Xe • Large liquidscintillator: mass of isotopes 136Xe, 150Nd • A problem to understand: the background at ~100 kg • (related to istopes and techniques)

  13. Effective neutrino mass and q13 Isotope mass Required background level ~ 10 kg 2011 100 – 1000 cts/yr/ton ~ 100 kg 2015 1 – 10 cts/yr/ton ~ 1000 kg 0.1 – 1 cts/yr/ton |mee| Heidelberg-Moscow (2001) ~11 kg of enriched Ge bb(0n) ? S T Petcov 2009 J. Phys.: Conf. Ser.173 012025 This experimentalreviewwillbefocused on the last resultsof 10 kg and100 kg experiments

  14. bb(0n) : experiments and projects NEMO3/SuperNEMO (82Se, 150Nd, 48Ca) NEXT (136Xe) SNO++ (150Nd) DCBA (150Nd) EXO (136Xe) Majorana (76Ge) EXO gaz (136Xe) Cuoricino/CUORE (130Te) GERDA (76Ge) COBRA (116Cd) CANDLES (48Ca) KamLAND-ZEN (136Xe) MOON (100Mo) Tracko-calo Source  detector Calorimeter Source = detector b b b b

  15. bb(0n): Present situation Ge diode detectors Heidelberg-Moscow (2001) ~11 kg of enriched 76Ge (86%) IGEX (2002) ~ 8.4 kg of enriched 76Ge (86%) 35.5 k.yr 8.9 kg.yr without PSA 4.6 kg.y with PSA 0.06 cts/keV/kg/yr T 1/2 >1.9 1025 yr (90% CL) T 1/2 >1.57 1025 yr (90% CL) <mn> <0.35-1.05 eV (90% CL) <mn> <0.33-1.31 eV (90% CL) Eur. Phys. J., A 12 (2001) 147 Phys. Rev. D65 (2002) 092007

  16. Cuoricino Thermometer Double beta decay 5.3 kg.an 208Tl (232Th chain) T1/2 > 1. 1024 ans (90%) <mn> <0.5 – 2.4 eV 60Co pile up 214Bi (238U chain) bb(0n) Energy (keV) Bolomètres: CUORICINO Bolometers of TeO2 Heat sink Crystal absorber Stopped in 2008 DE/E ~ 8 keVat 2 527 keV Located in GranSassoLaboratory (Italy)

  17. Cuoricino results Bolomètres: CUORICINO

  18. CUORE

  19. CUORE (Italy, USA,Spain) 750 kg of TeO2 203 kg of 130Te Array of 988 TeO2 5x5x5 cm3 crystals Improvement of surface event rejection Goal :Nbckg=0.01 cts.keV-1.kg-1.yr-1 (Factor 20 compared to Cuoricino) LUCIFER: R&D on scintillatingbolometerslike82Se 116CdWO4 Expectedsensitivity Nbckg=0.01 cts.keV-1.kg-1.yr-1 T½ > 2.1 1026 yr <mn> < 0.03 – 0.17 eV Test of 1 tower of CUORE in Cuoricino in 2011 Data takingforeseen in 2013

  20. NEMO 3 E1+E2= 2088 keV t= 0.22 ns (vertex) = 2.1 mm sourcesthicknessmg/cm2)  Bckg 82Se (0,93 kg) Tracko-calo detector Drift chamber (6000 cells) Plastic scintillator + PMT (2000) 10 kg of isotopes DE/E (FWHM) : 8 % @ 3 MeV Located in Modane Underground Lab (France) Bckg: 0.025 cts/keV/kg/yr Multi-source detector E1 e- Vertex e- E2 bb events

  21. NEMO3 Results 100Mo, 23.4 kg.yr 620 000 events Bosonic fraction of neutrino wavefunction Sin c < 0.6

  22. NEMO3 Results

  23. NEMO3 Results

  24. From NEMO3 to SuperNEMO SuperNEMO NEMO-3 82Se ,150Nd or 48Ca isotope 100Mo isotope massM 100 kg 7kg 208Tl < mBq/kg if 82Se: 214Bi < 10 mBq/kg 208Tl: < 20 mBq/kg 214Bi: < 300 mBq/kg internal contaminations 208Tl and 214Bi in the bb foil energy resolution (FWHM) 8% @ 3MeV 4% @ 3 MeV T1/2(bb0n) > 2 x 1024 y <mn> < 0.3 – 1.3 eV T1/2(bb0n) > 1026 y <mn> < 50 – 110 meV Me Tobs NA T1/2 (bb0n) > ln 2   A N90 efficiency  ~ 30 % 15 %

  25. SuperNEMO conceptual design 1 m 5 m 20 modules for 100 kg Source (40 mg/cm2) 12m2 Tracking (~2-3000 Geiger cells). Calorimeter(500 channels) Total:~ 40 000 – 60 000 geigercellschannels ~ 10 000 PMT Top view

  26. SuperNEMO DE/E < 4% (FWHM) @ Qbbdemonstrated (< 8% @ 1 MeV) Commissioning of wiring robot FWHM = 7,1 % (7,6% beforeenergy loss correction) SuperNEMO phase I : 2011 – 2014 Contructiondemontratormodule with 7 kg of 82Se (1 kg of 48Ca ?) Commissing @LSM 2013 Sensitivityin 1 year: T1/2 < 5 1024 y <mn> < 0.2 – 0.6 eV SuperNEMO phase II : 2014 – 2019 100 kg of 82Se (or 150Nd,or48Ca) T1/2 > 1026 y <mn> < 0.05– 0.14 eV SuperNEMO @ LSM extension

  27. Ge detector improvements crystal anti-coincidence Detector segmentation segments detector e-  pulse shape analysis R&D: liquid argon anti-coincidence Liquid argon e- scintillation Strategies:Ge detectors in liquid nitrogen to remove materials Active shielding and segmentation of detectors to reject gamma-rays

  28. GERDA Removal of matter Use of liquidnitrogen or argon for active shielding Segmented detectors in futur Improvement of Pulse Shape Analysis PHASE I:17.9 kg of enriched76Ge (from HM and IGEX) In 1 year of data if B=10-2 cts/keV/kg/yr (check of Klapdor’s claim) Start 2011 atGranSassoT1/2 > 3 1025yr <mn> < 0.25 eV PHASE II:40 kg of enriched76Ge (20 kg segmented) 2012 if B=10-3 cts/keV/kg/an T1/2 > 2 1026yr in 3 years of data <mn> < 0.1 eV

  29. GERDA • Nov/Dec.’09: Liquid argon fill • Jan ’10: Commissioning of cryogenic system • Apr/Mai ’10: emergency drainage tests of water tank • Apr/Mai ’10: Installation c-lock • May ’10: 1st deployment of FE&detector mock-up • June ‘10: Commissioning with natGe detector string • Soon: start Phase I physics data taking

  30. Majorana (USA, Russia, Japan) Ge diodes Very pure material (Electroformedcopper) Segmentation PSD improvement R&D phase 30-60 kg of 86% enriched 76Ge crystals Some of the crystals segmented • Bckg goal ~ 1 count/ROI/t-yr (after analysis cuts) • 30 kg of enriched Ge, running 3 yr. Data taking scheduled for 2011 T1/2 > 1. 1026yr<mn> < 0.14 eV(couldconfirm or refuteKlapdor’s claim) Collaboration with Gerda for 1 ton detector

  31. EXO - 200 (USA, Canada, Switzerland, Russia) Liquid Xe TPC Ionization + scintillation DE/E (FWHM)= 3.3 % @Qbb Possibility of Baryum ion tagging by Laser florescence (136Xe  136Ba++ + 2 e R&D in progress Gazeous TPC R&D 200 kg of 136Xe, no Ba ion tagging Installation in WIPP underground lab Possibility to measurebb(2n) EXO-200 full of natural Xe- Tuning on all systems - Engineering runs - Physics mode as soon as possible

  32. SNO++ Scintillatorloadedwith Nd. 500 kg of 150Nd 1 year <mn> = 150 meV only internal Th and 8B solar neutrino backgrounds are important Test of light attenuation Study of Nd purification (factor 1000 per pass in Th and Ra) 56 kg of 150Nd (0,1 % of naturalNd) 4 yr of data <mn> ~0.08eV 500 kg of 150Nd 4yr <mn> ~0.03 eV

  33. KamLAND-Zen

  34. CANDLES Liquid Scintillator (Veto Counter) CaF2(Pure) Buffer Oil Large PMT (Japan) Pure CaF2 crystals Wavelengthshifter in LS PSD to rejectg and a CANDLES III 103cm3 × 96 crystals 305 kg Data taking in 2011 @ Kamioka Expected BG: 0.14 event/yr (30 µBq/kg) <mn> ~0.5 eV CANDLES IV :3 tons of CaF2 (3 mBq/kg) 6 yr <mn> ~0.1 eV

  35. DCBA Drift Chamber beta-ray Analyser Prototype with 207Bi : 10% (FWHM) energy resolution X position s= 0.5 mm Y position s= 0.02 mm X position s= 6 mm

  36. COBRA (UK, Germany, Italy, poland, Slovaquia, Finland, USA) Array of 1cm3CdZnTedetectors Cd-113 beta decaywith half-life of about 1016 yrs 4x4x4 detector array = 0.42 kg CdZnTe Installed at LNGS Test of coincidence rejection Measure of 113Cd

  37. Sensitivities 2013 - 2018

  38. Summary Present 10 kg experimentreach a sensitivity<mn> < 0.3 – 1 eV Background ~100 – 1000 cts/ton/yr 1OO kg experimentswillreach a sensitivity on <mn> < ~50 meV in the next 5 yr Background ~ 1 – 10 cts/ton/yr (Remark: to win a factor 10 on bckgittakes 5 – 10 yrs) Step by stepapproach: GERDA, MAJORANA, CUORE, SuperNEMO Agressive approach (no 10 kg prototype): EXO, SNO++, KamLAN-Zen, NEXT Possibility to enrich150Nd, 96Zr or 48Ca in the futur ? 100 kg experiments essential to validate technique and background for 1 ton experiments

  39. 100 kg experiments Step by stepapproach GERDA Ge diode in LAr CUORE130Te bolometers GranSassolaboratory GranSassolaboratory CUORE-0 39 kg of natTe 13 kg of 130Te Data taking 2011 CUORE 200 kg Data taking 2013 (scintillatingbolometres ?) 2010: 18 kg of 76Ge (HM and IGEX crystals) 1st results 2011 2012: 40 kg of 76Ge + Energyresolution + Natural Te + Energyresolution SuperNEMOtracko-calo MAJORANA Ge segmented Diode Modane laboratory DUSEL laboratory Module-0 7 kg of 82Se (150Nd) Data taking 2013 20 Module 100 kg Data taking 2015 2011: 20 kg of natGe 2013 ? : 30 kg of 76Ge + Background rejection + Multi-isotopes + Energyresolution

  40. 100 kg experiments Agressive approach (no 10 kg prototype) EXOliquidXenon SNO++ Ndsalt + liquidscintillator WIPPL laboratory SNOLAB laboratory 2010: 200 kg of 136Xe Results 2013 Ba tagging R&D 2010: 740 kg of natNd (44 kg of 150Nd) Dissolved in scintillator + Large mass + Possibility to tag daughter nucleus + Large mass + low background detector NEXT Xe high pressure TPC KamLAND-ZenXe + liq. scintillator Canfranclaboratory Kamiokalaboratory 2011: 1 kg of 136Xe 2013 : 100 kg 2011: 400 kg of 136Xe Dissolved in liq. scintillator + Large mass + Background rejection

  41. bb(0n) signal ? HM claim 2006: Improvement of PSA (6s) 2004 (4s) +0.44 T1/2=2.231025 yr T1/2= (0.69 – 4.18) 1025 <mn>= 0.28-0.58 (90%) -0.31 <mn> = 0.32 ± 0.03 eV

  42. NuclearMatrixElement From F. Simkovic (neutrino 2010) arXiv:1008.5260v2 : Tomás R. Rodríguez, G. Martinez-Pinedo

More Related