350 likes | 453 Views
Lines in Space. z. Equation of a Line. Q. P. y. x. z. Equation of a Line. Q. d. P. r 0. y. x. z. Equation of a Line. Q’. Q. d. P. r. r 0. y. x. z. Equation of a Line. Q’. P(x 0 ,y 0 ,z 0 ). Q. Q(x 1 ,y 1 ,z 1 ). d. Q’(x,y,z). P. r. r 0 =x 0 i +y 0 j +z 0 k.
E N D
z Equation of a Line Q P y x
z Equation of a Line Q d P r0 y x
z Equation of a Line Q’ Q d P r r0 y x
z Equation of a Line Q’ P(x0,y0,z0) Q Q(x1,y1,z1) d Q’(x,y,z) P r r0=x0 i+y0 j+z0 k d=d1 i+d2 j+d3k r0 =(x1 -x0)i+(y1-y0)j+(z1-z0)k y x
z Equation of a Line Q’ P(x0,y0,z0) Q Q(x1,y1,z1) d Q’(x,y,z) P r r0=x0 i+y0 j+z0 k d=d1 i+d2 j+d3k r0 =(x1 -x0)i+(y1-y0)j+(z1-z0)k y Vector Parameterization x
z Equation of a Line Q’ P(x0,y0,z0) Q Q(x1,y1,z1) d Q’(x,y,z) P r r0=x0 i+y0 j+z0 k d=d1 i+d2 j+d3k r0 =(x1 -x0)i+(y1-y0)j+(z1-z0)k y Vector Parameterization x
z Equation of a Line Q’ P(x0,y0,z0) Q Q(x1,y1,z1) d Q’(x,y,z) P r r0=x0 i+y0 j+z0 k d=d1 i+d2 j+d3k r0 =(x1 -x0)i+(y1-y0)j+(z1-z0)k y Vector Parameterization x
z Equation of a Line Q’ P(x0,y0,z0) Q Q(x1,y1,z1) d Q’(x,y,z) P r r0=x0 i+y0 j+z0 k d=d1 i+d2 j+d3k r0 =(x1 -x0)i+(y1-y0)j+(z1-z0)k y Vector Parameterization x Scalar Parametric Equations
z Equation of a Plane y x
z Equation of a Plane y x
z Equation of a Plane y x
z Equation of a Plane y x
z Equation of a Plane y b x
z Equation of a Plane c y x
z Equation of a Plane y x
z Equation of a Plane n P y x
z Equation of a Plane P(x0,y0,z0) Q(x,y,z) n=ai+bj+ck r=(x-x0)i+(y-y0)j+(z-z0)k n Q r P r Q y x
z Equation of a Plane P(x0,y0,z0) Q(x,y,z) n=ai+bj+ck r=(x-x0)i+(y-y0)j+(z-z0)k n Q r P r Q y Vector Equation x Scalar Equation
z Equation of a Plane P(x0,y0,z0) Q(x,y,z) n=ai+bj+ck r=(x-x0)i+(y-y0)j+(z-z0)k n Q r P r Q y Vector Equation x Scalar Equation
z Equation of a Plane P(x0,y0,z0) Q(x,y,z) n=ai+bj+ck r=(x-x0)i+(y-y0)j+(z-z0)k n Q r P r Q y Vector Equation x Scalar Equation
Examples • Find the equation of the plane through (1,1,2), (3,2,-1) and (4,2,-1). • Find the equation of the plane through (2,-1,3) and parallel to 3x – y + 4z =12.
Parametric Equation of a Plane z R X P Q y P Parametric Equation x
Parametric Equation of a Plane z R X P Q y P Parametric Equation x
Parametric Equation of a Plane z R X P Q y P Parametric Equation x
Representations of a Plane Scalar Equation Parametric Equation
Angle Between Planes • Find the angle between the two planes 2x – 3y + 4z = 6 and x + 2y – 3z = -1
Graphing Planes • Find the intercepts of the planes 2x – 3y + z = 6 4y + 2x = 8 z = 3 • Sketch the planes. • Find the normals to the planes.
Examples z • Find the equation of the plane pictured. 4 y 5 3 x