1 / 28

Thermal Statistics, Hydrodynamics and Thermalization

Thermal Statistics, Hydrodynamics and Thermalization. Zhangbu Xu ( 科大 / BNL). Therm al statistics ( 热统 ) Hydrodynamics ( 流体力学 ) F low ( 流 ). STAR whitepaper. Temperature from Chemistry among hadrons. Statistical Mechanics describes the relative particle abundances

merry
Download Presentation

Thermal Statistics, Hydrodynamics and Thermalization

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Thermal Statistics, Hydrodynamics and Thermalization Zhangbu Xu (科大/BNL) • Thermal statistics (热统) • Hydrodynamics (流体力学) • Flow (流)

  2. STAR whitepaper Temperature from Chemistry among hadrons • Statistical Mechanics describes the relative particle abundances • This happens at the phase boundary (T=165+-10MeV) STAR whitepaper, NPA757(2005) 强子的热统分布: 温度和化学势

  3. Thermal Statistical Model热统计模型 Particle Density粒子密度分布 Modified Bessel Function Must Include all particles including resonances !! http://arxiv.org/abs/nucl-th/0304013

  4. SU(3) Representation of Particles

  5. Strangeness Conservation奇异数守恒 In Strong Interaction: 奇异夸克只能成对产生, 因为不是价夸克 Associated Production联合产生: p + N  NLK+ Pair Production对产生: p + N pNK+K- Threshold in fixed target: s = (E+mN)2 – p2 作业题:Associated Production More Effective (lower Threshold)@ low beam energies

  6. Strong force generates mass Proton: up+up+down quarks Neutron: up+down+down quarks p,n mass: ~ 1 GeV/c2/3=0.3 GeV/c2 Proton: up+up+down quarks Neutron: up+down+down quarks p,n mass: ~ 1 GeV/c2/3=0.3 GeV/c2 • Quark has two kind of masses: • Constituent quark mass 组分夸克质量(“dressed” with sticky gluons, m=E/c2), • Current quark mass流夸克质量

  7. Strange quark yields Sensitive to Bulk Partonic Matter 奇异夸克(s) 组分夸克质量:0.45GeV 流夸克质量: 0.1 GeV In QGP, Tc>ms 热力学的对产生占主要 而且流夸克质量只有0.1 GeV J. Rafelski and B. Muller, Phys.Rev.Lett.48:1066,1982

  8. STAR whitepaper Chemistry among hadrons • Statistical Mechanics describes the relative particle abundancesThis is not trivial • Strange particles are suppressed in e+e- or p+p but fully equilibrated in central Au+Au collisions • This happens at the phase boundary (T~=165 MeV)

  9. QCD Phase Diagram强相互作用的相图 A thermodynamic state (热力学态)is specified by a set of values of all the thermodynamic parameters necessary for the description of the system. --- statistical mechanics by K. Huang Temperature (T), chemical potential (m), pressure(P) … • Chemical/thermal Equilibrium at certain stage of the evolution在某个时候达到化学和热平衡 • At the predicted QCD phase boundary和理论预言吻合 • persistent from SPS to RHIC • Below the phase boundary atAGS and SIS

  10. 什么是温度? • 我们上述测量的是不是热力学所定义的温度? • 什么是热力学所定义的温度? • 粒子的无规则运动程度? • 物质的冷热? • 能量均分和能量守恒的Lagrangian插值量 • 这跟我们学科有什么关系? • 相图(三相点) • QGP态 • 能否用到天体物理和宇宙学上(中子星,宇宙早期) 作业题 作业题

  11. 重核子碰撞的时空演化 p, K, N, … t p, K, N, … • Stages in the collision 1. Pre-equilibrium Hard parton scattering processes 2. Equilibration After t≤ 1 fm/c partons materialise and either hadronise or rescatter. 3. Thermal quark-gluon plasma Hydrodynamic expansion 4. Hadronization (phase transition) Quark coalescence + gluon fragmentation … or … String fragmentation 5. Hadron gas Hadrons continue to interact 6. Particle freeze-out • Chemical freeze-out 化学冻结 粒子数不再变化 • Thermal freeze-out热冻结不再有强相互作用 tf tf 6. t(eH) Hadron gas t(eQ) 5. t0 = th 6. Mixed phase Hadron gas t0 = tq 4. QGP 5. 3. 4. 2. 1. 1. Hadron formation. Parton formation and thermalisation. z A A a) Without QGP b) With QGP

  12. QCD Phase Diagram强相互作用的相图 A thermodynamic state (热力学态)is specified by a set of values of all the thermodynamic parameters necessary for the description of the system. --- statistical mechanics by K. Huang Temperature (T), chemical potential (m), pressure(P) … • Chemical/thermal Equilibrium at certain stage of the evolution在某个时候达到化学和热平衡 • At the predicted QCD phase boundary和理论预言吻合 • persistent from SPS to RHIC • Below the phase boundary atAGS and SIS

  13. Blast Wave 爆炸波模型 where: E.Schnedermann et al, PRC48 (1993) 2462 F. Retiere, M. Lisa, http://arxiv.org/abs/nucl-th/0312024 r =s(r/R)n STAR Preliminary

  14. Blast Wave Fit爆炸波模型拟合 Parameters: Freeze-out T; Transverse Flow Velocity bT

  15. pT: mass dependence • STAR Preliminary • p+p collisions (m.b.) • All fit to thermal (T,bT) = (0.17,0)  Except f, L(1520) Au+Au collisions (5%) • All fit to thermal (T,bT) = (0.1,0.6c) • Except W • (T,bT) = (0.17,0.3c) Partonic collectivity? ===================== • Note: • (1) W- + W+ (10%) • (2) d+anti-d (top 18%) (Phenix)

  16. Blast wave fits: Tfo vs. bT 1) p, K, and p change smoothly from peripheral to central collisions. 2) At the most central collisions, <T> reaches 0.6c. 3) Multi-strange particles ,  are found at higher T and lower <T> •  Sensitive to early partonic stage! • STAR: NPA715, 458c(03); PRL 92, 112301(04); 92, 182301(04). 200GeV Au + Au collisions

  17. F.D. O’Hara et al. Science 298(2002) STAR Visual v2 0.2<pT<0.6 Taking pictures in different ways • Strongly interacting Li6 cold atoms (superfluid fermion) • Take pictures at different time • Strongly interacting QGP • “Take” pictures for different particles, beam, rapidityHigher harmonics • ±0,K±0,p,,,,,K*,D20, 62,130,200 GeV v1,v2, v4 Time: 10-23s – 400ms Size: 10fm – 100mm

  18. Equation of State状态方程 ideal hydrodynamics Tmn : energy-momentum tensor f(x,p): phase space - dynamics um: 4-velocity g: Lorentz factor K.J. Eskola, et al., nucl-th/9705015 --------------------------------- - Initial conditions (?) - EOS (?) - Freeze-out conditions (?) With given degrees of freedom, the EOS - the system response to the changes of the thermal condition - is fixed by its p and T or.

  19. Equation of State Energy Density/T4 Pressure pGeV/fm3 Energy Density (GeV/fm3) • Equation of state: • EOS I : relativistic ideal gas • p = /3 • EOS H: resonance gas • p ~ /6 • - EOS Q: Maxwell construction: • Tcrit= 165 MeV • B1/4 = 0.23 GeV • lat=1.15 GeV/fm3 • P. Kolb et al., Phys. Rev. C62, 054909 (00).

  20. Hydrodynamics and anisotropic flow • Ideal hydrodynamics describes the anisotropic flow • Even the mass splitting • Liquid-like matter • Strong couplingFast thermalization low viscosity  important theoretical implication

  21. Transverse Flow Observables Particle mass dependent. 1) Radial flow – integrated over whole evolution 2) Directed flow (v1) – relatively early 3) Elliptic flow (v2) – relatively early

  22. directed flow py elliptic flow px Flow Vector Sum of vectors of all the particles S. Voloshin and Y. Zhang, Z. Phys. C 70, 665 (1996)

  23. bounce-off all v2{EP} In-plane elliptic flow squeeze-out six decades Elliptic Flow vs. Beam Energy 25% most central mid-rapidity powerful, widely-used tool, to study EOS of nuclear matter A. Wetzler (2005)

  24. flow scaled by eccentricity Au+Au 200 GeV particle density Approach to Hydro Sergei Voloshin, QM06, S883 (2007)

  25. LHC, U+U at RHIC? Is hydrodynamic limit a limit? What is the viscosity? Value+-error

  26. 200 GeV Au+Au STAR Preliminary Coalescence of Quarks Non-equilibrium process • Number of Constituent Quark (NCQ) • transition regime 2<pT<5 GeV/c • Multi-strangeness baryons • Heavy Mesons (K*, f) Surprising Discoveries at RHIC: Coalescence of quarks? New hadronization mechanism?

  27. Models prior to RHIC CGC: high density gluons Dilute gas Physics Today, Ludlam/McLerran momentum Thermalization Simple Counting Initial condition: high density gluons DIS: ep, eA (eRHIC)

  28. Vacuum Engineering Big Bang It is just the beginning Hydrodynamics Theory of color Heavy Ion new state Perfect (QCD) Non-Abelian Experiments of matter Liquid Renaissance-simon F. Wilczek Chern-simon Hall Effect Quantum Hall FQHE 5/2 Quantum Quantum Mechanics Effect Anyon Non-Abelian Computing

More Related