1 / 32

Die DNA-Replikation erfolgt bi-direktional

Die DNA-Replikation erfolgt bi-direktional. Replikationsgabel. DNA-Polymerasen starten die Replikation am Replikations-Startpunkt = “ Origin “. Startkomplex. - Primase - DNA-Polymerase. Replikation. Wie funktioniert der einzige “Origin of Replication“ in E. coli?. OriC. DnaA

merv
Download Presentation

Die DNA-Replikation erfolgt bi-direktional

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Die DNA-Replikation erfolgt bi-direktional Replikationsgabel DNA-Polymerasen starten die Replikation am Replikations-Startpunkt = “Origin“

  2. Startkomplex - Primase - DNA-Polymerase Replikation Wie funktioniert der einzige “Origin of Replication“ in E. coli? OriC DnaA (ATPase) 30°C DnaB = Helikase DnaC ATP Erkennung Offener Komplex leichtes „Schmelzen“ der DNA „Prä-Priming“ Komplex

  3. Brechen der H-Brücken ( Helicase) entlang der Basenpaare Der Mechanismus der DNA-Replikation ori

  4. 5‘ allgemein gilt: Desoxynukleosid-5‘-Triphosphate sind die aktivierten Vorstufen bei der DNA-Synthese: dATP, dCTP, dGTP, dTTP (dNMP) n + dNTP (dNTP) n+1+ PPi DNA-Polymerase Neu-eintretendes Desoxy-Nukleosid-Triphosphat 3‘ Nukleophiler Angriff der 3‘-OH Gruppe am a-Phosphoatom 5‘ 0 + 0 0 O 3‘ Die Biochemie der DNA-Kettenverlängerung Wie werden die Desoxy-Nukleotid-Bausteine in die DNA eingebaut? o 5‘ > 3‘ Verknüpfung (Phospho-Diester-Brücken) o 5‘-Ende mit Phosphat-Gruppe o 3‘-Ende mit freier OH-Gruppe

  5. Die Biochemie der DNA-Kettenverlängerung Wie werden die Desoxy-Nukleotid-Bausteine in die DNA eingebaut?

  6. 5‘ DNA-Polymerase 3‘ Bewegung der Replikationsgabel 5‘ 3‘ DNA-Polymerase Die Biochemie der DNA-Replikation (dNMP)n + dNTP (dNMP)n+1+ PPi DNA-Polymerase grundsätzlich gilt, daß DNA-Polymerasen nur synthetisieren können 5‘>3‘ d. h . DNA-Polymerasen besitzen eine 5‘>3‘ Polymerase-Aktivität 3‘ 5‘

  7. Das Problem der “lagging strand“ DNA-Replikation DNA-Polymerasen besitzen eine 5‘>3‘ Polymerase-Aktivität DNA-Polymerase kontinuierlicher Strang (“leading strand“) 3‘ Bewegung der Replikationsgabel 3‘ 3‘ 5‘ 5‘ 5‘ 3‘ dis-kontinuierlicher Strang (“lagging strand“) 5‘

  8. Noch ein anderes Problem bei der DNA-Replikation......

  9. DNA-Polymerasen benötigen einen kurzen “RNA-Primer“ zum Start der Replikation DNA-Polymerasen verwenden den einzelsträngigne DNA-Strang als Matritze, aber der Einzelstrang muß einen Primer gebunden haben (doppelsträngiger Abschnitt), damit die DNA-Polymerase den 2. Strang auffüllen kann Primer DNA-Polymerase

  10. DNA-Polymerase 3‘ 5‘ Primer 3‘ 5‘ DNA-Polymerasen benötigen einen kurzen “RNA-Primer“ zum Start der Replikation 3‘ leading strand 3‘ 5‘ lagging strand 5‘

  11. Die vollständige Synthese des Folgestrangs Primer Primer Okazaki Fragment

  12. Die Ligase-Reaktion DNA-Ligase + ATP + PPi

  13. ATP PPi Enzym-AMP Die einzelnen Schritte der Ligase-Reaktion e-Aminogruppe eines Lysins AMP

  14. Vergleich der drei DNA-Polymerasen von E. coli DNA-Reparatur DNA-Reparatur DNA-Replikation Anzahl der Untereinheiten Synthese-Rate (Nukleotide/sec) Prozessivität (eingefügte Nukleotide vor dem Abdissoziieren) 3‘>5‘ Exonuclease (Korrekturlesen) ja ja ja 5‘>3‘ Exonuclease ja nein nein Molekulargewicht 103 kDa 88 kDa 900 kDa

  15. DNA-Polymerase III vermutlich Schleifenbildung b-Untereinheit für die Bindung an die DNA a-Untereinheit mit DNA-Polymerase- Aktivität (5‘>3‘) e-Untereinheit 3‘>5‘ Exonuclease Untereinheiten und Struktur der DNA-Polymerase III von E. coli Die DNA-Polymerase III (Holoenzym) bildet einen Dimer und kann dadurch gleichzeitig sowohl am Leitstrang wie am Folgestrang synthetisieren. Die Synthesegeschwindigkeit beträgt: V = 1000 BP/sec

  16. Kristallstruktur von Klammer-Dimer Komplex Klammer Griff DNA DNA-Polymerase III Der Griff-Klammer-Komplex (RFC-PCNA) kann armreifartig an der DNA entlanggleiten. An den Griff-Klammer-Komplex bindet die DNA-Polymerase III, die während der Replikation dadurch mit hoher Prozessivität an der DNA entlangwandern kann, ohne dabei abzufallen „Akzessorische Proteine“ der DNA-Polymerase

  17. Primosom Primase Pol III Okazaki- Stücke (DNA-Polymerase) Das E. coli Replisom mit seinen verschiedenen Komponenten Damit die DNA-Replikation in der Replikationsgabel kontinuierlich voran- schreiten kann, muß die doppelsträngigeDNA in der Gabel in die Einzelstränge getrennt werden. >> Eine DNA-Helicase windet unter ATP-Verbrauch die DNA auf. Bewegungsrichtung der Replikationsgabel Helicase Damit die entwundene DNA kurzzeitig einzelsträngig bleibt, bindet das SSB (“single-stranded DNA-binding protein“) an die noch nicht replizierte DNA. Damit wird die Verknäuelung der ss-DNA verhindert. SSB Später wird das SSB von der vorrückenden DNA-Polymerase wieder von der Matritze abgetrennt. 5‘ 3‘ 3‘ RNA-Primer DNA-Polymerase I + Ligase Leitstrang Folgestrang

  18. jedoch: ein- und dieselbe DNA-Polymerase III synthetisiert gleichzeitig Leit- und Folgestrang! Eine konzertierte Aktion bei der Synthese von Leit- und Folgestrang

  19. Bewegungsrichtung der Replikationsgabel Primer Okazaki- Stück „Schleifenbildung“ am Folgestrang bei der DNA-Replikation Helicase Primosom Schleifenbildung DNA-Polymerase III Holoenzym-Dimer Primer DNA-Polymerase III Holoenzym-Dimer Leitstrang Folgestrang

  20. Helicase Primosom Schleifenbildung 3‘ 3‘ 5‘ Primer 5‘ DNA-Polymerase III Holoenzym-Dimer 5‘ 3‘ Schleifenbildung bei der Synthese von Leit- und Folgestrang Okazaki- Stück DNA-Polymerase III Holonenzym-Dimer

  21. DNA-Polymerase III Holonenzym-Dimer Die Schleifenbildungan der DNA-Folgestrangmatritze ermöglicht der dimeren DNA-Polymerase III die Synthese beider Tochterstränge in der Replikationsgabel. Dadurch wird die physikalische Richtung am Folgestrang, nicht aber die biochemische Richtung(5´>3´) umgedreht

  22. Eine konzertierte Aktion bei der Synthese von Leit- und Folgestrang Leitstrang Griff Bewegungsrichtung der Replikationsgabel Klammer DNA-Polymerase III Helicase Primase Topoisomerase Ligase RNA-Primer DNA-Polymerase I SSB Okazaki- Stücke RNA-Primer Folgestrang

  23. Die gleichzeitige Synthese von DNA Leit- und Folgestrang durch die dimere DNA-Polymerase III

  24. Eine Computer-Animation: gleichzeitige Synthese von DNA Leit- und Folgestrang durch das Holo-Enzym DNA-Polymerase III

  25. Fragen aus der schriftlichen Physikumsprüfung • 53 • Essentielle Grundlage des Lebens ist die Fähigkeit der identischen Reduplikation • des genetischen Materials und damit letztendlich der Vererbung einer funktionsfähigen • Zellstruktur. • Welche Aussage zur Replikation der DNA trifft zu? • (A) Beim Start der Replikation werden RNA-Primer synthetisiert. • (B) Die Neusynthese der DNA erfolgt an beiden Strängen einer • Replikationsgabel in kürzeren Stücken, so genannten Okazaki-Fragmenten. • (C) Für die Verknüpfung der DNA-Fragmente nach Entfernen der Primer • phosphoryliert die DNA-Ligase das 3’-OH-Ende eines Fragmentes. • (D) Helicasen schützen intermedär gebildete einzelsträngige DNA-Bereiche • vor Schädigungen und Strangbrüchen. • (E) Interkalatoren, die als Zytostatika in der Tumortherapie eingesetzt werden, • binden spezifisch die DNA-Polymerasen.

  26. Die Entwindung des DNA-Matritzenstrangs während der DNA-Replikation führt zu Verdrillungen

  27. Entwinden der DNA während der Replikation durch die Helicase dadurch Verdrillung der DNA Replikation Transienter Bruch des einen Strangs erlaubt freie Rotation der DNA-Stränge und Entdrillung der beiden Stränge >>katalysiert durchDNA-Topoisomerase

  28. Fragen aus der schriftlichen Physikumsprüfung

  29. Fragen aus der schriftlichen Physikumsprüfung

  30. Nukleosomen-Assemblierung nach DNA-Replikation in Eukaryonten

  31. Die Enden der menschlichen Chromosomen sind linear >>> Probleme bei der Replikation Telomerase mit RNA Primer

More Related