1 / 41

A Pitagorasz tétel

A Pitagorasz tétel. Készítette: Mg r. Csikós Pajor Gizella Szabadkai Műszaki Szakfőiskola, Szabadka Bolyai Tehetséggondozó Gimnázium és Kollégium, Zenta. A Pitagorasz tételről. A Pitagorasz tétel az euklideszi geometria egyik legismertebb állítása.

mervin
Download Presentation

A Pitagorasz tétel

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A Pitagorasz tétel Készítette: Mgr. Csikós Pajor Gizella Szabadkai Műszaki Szakfőiskola, Szabadka Bolyai Tehetséggondozó Gimnázium és Kollégium, Zenta

  2. A Pitagorasz tételről A Pitagorasz tétel az euklideszi geometria egyik legismertebb állítása. Nevét nem szabályos átírással az i.e. VI. században élt matematikusról és filozófusról, Püthagoraszról kapta, bár a tételt jóval előtte babiloni, egyiptomi, görög, indiai és kínai matematikusok már ismerték, sőt a kínaiak bizonyítást is adtak rá.

  3. Püthagorasz életéről Püthagorasz, i.e VI. század görögül: Πυθαγόρας latinosan: Pythagoras ión származású filozófus és matematikus a püthagoreus iskola megalapítója

  4. Püthagorasz életéről Püthagorasz mellszobra a Vatikánban

  5. Püthagorasz életéről Püthagorasz mellszobra, Rómában található a Capitolium Múzeumban

  6. Püthagorasz életéről Püthagorasz középkori ábrázolása a nürnbergi krónikában

  7. Püthagorasz életéről Püthagorasz ábrázolása egy III. századbeli pénzérmén

  8. Püthagorasz életéről Raphael festménye Püthagoraszról

  9. Püthagorasz életéről Püthagorasz ión származású, a Kis-Ázsiához közel eső Samos szigeten született, a különböző források alapján valamikor i.e. 586 és 570 között. Édesapja ékszer- és dísztárgy-készítő volt.

  10. Püthagorasz életéről Samos szigete az Égei-tengerben

  11. Püthagorasz életéről

  12. Püthagorasz életéről

  13. Püthagorasz életéről

  14. Püthagorasz életéről Ifjúkorában Püthagorasz annyira szerette a tudományokat, hogy fiatalon elhagyta hazáját, és Egyiptomba ment, ahol megtanulta az egyiptomiak nyelvét, és tanulmányozta azok titkos írásait. Egyiptomból visszatért Samosra, majd körülbelül i.e.530-ban a dél-itáliai Krotón városba költözött.

  15. A pitagoreus iskoláról Itt alapította meg filozófiai és vallási iskoláját, a pitagoreus-iskolát. Ez az idealista, arisztokrata beállítottságú társulat misztikus és titokzatos szövetséggé vált, amely a maga korában jelentős befolyással bírt, nemcsak Krotón városában, hanem a görög városállamok laza szövetségében, a Magna Graeciában is.

  16. A pitagoreus iskoláról A pitagoreusok hittek a lélekvándorlásban, vegetariánusok voltak, és hosszú hajat, fehér gyapjúköntöst viseltek. Szigorúan előírt életmóddal és zenével tisztították meg lelküket, majd különböző próbák után léphettek a szövetségbe.

  17. A pitagoreus iskoláról Ezután avatták be őket a számok és a harmónia misztériumába, amelyben való elmélyülés biztosította számukra az örök igazság megismerését és az istenhez való felemelkedést. Hittek abban, hogy egy isten van, aki a világot a számok közötti kapcsolatoknak, törvényeknek megfelelően teremtette.

  18. A pitagoreus iskoláról A pitagoreusok nevéhez kötődik: a számelméleti kutatások megindítása, a szabályos sokszögek és a szabályos testek tanulmányozása, az irracionális számok felfedezése, a számtani illetve mértani középarányos fogalmának bevezetése.

  19. A pitagoreus iskoláról Püthagorasz Krotóni házigazdájának lányát vette feleségül, életrajza két gyermeküket említi, egy leány és egy fiú gyermeket. Iskolájának növekvő befolyása miatt szervezkedni kezdtek a pitagoreus ellenesek is, akik végül felgyújtották az iskola központját, egy Milón nevű atléta házát.

  20. A pitagoreus iskoláról Egyes hagyományok szerint a gyújtogatók elfogták és megölték Püthagoraszt, más töredékek szerint Metapontiumba száműzték, ahol hamarosan meghalt (a hagyományok szerint bánatában halálra éheztette magát). Ez körülbelül i.e. 500 illetve 496 körül történhetett.

  21. A pitagoreus iskoláról Tanítványainak egy részét lemészárolták, a többieket száműzték, az iskola termeit porig égették. Püthagorasz írásos művet nem hagyott maga után. Tanításait írásos formában tanítványai őrizték meg.

  22. Tudományos eredményei Bár a róla elnevezett tételt nem ő találta fel, sőt nem is ő bizonyította először, és nem tudni mi az amire valóban ő jött rá, és mi az, amire tanítványai, bizonyosnak látszik, hogy személyesen fedezte fel a rezonancia alaptörvényét, mely szerint a hang magassága a rezgő húr hosszának függvénye.

  23. Tudományos eredményei Felismerte, hogy az akkordok hangközeit a húrhosszak számarányaival fejezhetjük ki. A 2:1 arány az oktávnak, a 3:2 arány a kvintnek, a 4:3 arány pedig a kvartnak felel meg.

  24. Tudományos eredményei Középkori fametszet mutatja ahogyan Püthagorasz hangolja a harangokat

  25. Püthagorászról A hagyományok szerint Püthagorasz minden egyes beszédét, előadását függöny mögött tartotta. Ő maga nem volt látható, csak hallható. Önmagát félistennek tartotta, és állítólag a következő kijelentést tette: ”Vannak emberek és istenek s olyan lények mint Püthagorasz.”

  26. Püthagoraszról Püthagorasz emlékmű Samos szigetén.

  27. A Pitagorasz-tétel A Pitagorasz tételt már jóval Püthagorasz előtt is ismerték, sőt ismert volt a bizonyítása is. Az ókori egyiptomiak mindenesetre ismerték, hogy a 3,4 és 5 oldalú háromszög derékszögű, és ezt igen ügyesen használták ki a földterületek mérésében és a piramisok építésében, a következőképpen:

  28. A Pitagorasz-tétel Vettek egy hosszú kötelet, arra egyforma közönként 3+4+5=12 csomót kötöttek, összefogták 3, 4 és 5 oldalú háromszöggé és ezzel mérték a derékszöget.

  29. A Pitagorasz-tétel

  30. A Pitagorasz-tétel A Pitagorasz-tételt kétféle megfogalmazásban ismerjük. 1.TÉTEL: Tetszőleges derékszögű háromszögben a befogók fölé írt négyzetek területeinek összege megegyezik az átfogóra rajzolt négyzet területével.

  31. 2.TÉTEL: Bármely derékszögű háromszög leghosszabb oldalának (átfogójának) négyzete megegyezik a másik két oldal (a befogók) négyzetösszegével. A szokásos jelölésekkel: .

  32. A Pitagorasz-tétel Egyes források szerint a Pitagorasz-tételnek közel száz bizonyítása található különböző munkákban. Ezek közül a két legismertebb, a tétel kétféle megfogalmazására vonatkozó bizonyítás a következő:

  33. A Pitagorasz-tétel 1.Bizonyítás: az a+b oldalú négyzetek területeinek darabolása alapján

  34. A Pitagorasz-tétel 2. Bizonyítás: a befogótétel alapján

  35. Pitagorasz-tételének megfodítása TÉTEL: Ha egy háromszög két oldalának négyzetösszege egyenlő a harmadik oldal négyzetével, akkor a háromszög derékszögű.

  36. Pitagoraszi számhármasok Szóljunk még néhány szót a pitagoraszi számhármasokról is. Pitagoraszi-számhármasoknak nevezzük azokat a pozitív egész (a,b,c) számokból álló hármasokat, melyekre teljesül. Ekkor Pitagorasz-tételének értelmében a, b és c egy derékszögű háromszög oldalai.

  37. Pitagoraszi számhármasok A pitagoraszi számhármasok előállításának módját a pitagoreusok találták meg. Írjuk fel két sorban felül a négyzetszámokat, és alul a páratlan számokat. Az alsó sorban található négyzetszám a felső sorban felette lévő két négyzetszámmal együtt pitagoraszi számhármast alkot. Valóban:

  38. Pitagoraszi számhármasok 1 4 9 16 2536 49 64 81 100 121 144 169 196 1 3 5 7 9 11 13 15 17 19 21 23 25 27 Az alsó sorban az első négyzetszám a 9, felette van a 16 és a 25, következik, hogy 3, 4 és 5 pitagoraszi számhármas. Ugyanígy a következő négyzetszám a 25, felette 144 és 169 található, tehát az 5, 12 és 13 pitagoraszi számhármas.

  39. Pitagoraszi számhármasok Azt, hogy számtalan sok ilyen pitagoraszi számhármas létezik, Euklidész bizonyította be. Ha n természetes számot jelöl, akkor pitagoraszi számhármasok például a következők: 3n,4n,5n 5n,12n,13n 7n,24n,25n 8n,15n,17n 9n,40n,41n 11n,60n,61n 12n,35n,37n stb.

  40. A pitagorasz-tétel alkalmazása Pitagorasz tételének számtalan sok alkalmazása van úgy a geometriában mint az analitikus mértanban. Legyen az elkövetkezendő matematikaóráitok tananyaga ezen széleskörű alkalmazások megismerése.

  41. Irodalomjegyzék Sain Márton: Matematikatörténeti ABC, Tankönyvkiadó, Budapest,1977 Breznai Gyula: Pitagorasz tétele, Tankönyvkiadó Budapest, 1971-1972 K. A. Ribnyikov: A matematika története,Tankönyvkiadó, Budapest, 1968 Sain Márton: Nincs királyi út! ,Gondolat, Budapest, 1986 www.wikipedia.com www.wikimedia.org

More Related