1 / 29

driver accelerator

meryle
Download Presentation

driver accelerator

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Overview of Recent Highlights from ISOL FacilitiesJuha ÄystöDepartment of Physics, University of Jyväskylä& Helsinki Institute of PhysicsFinlandIntroduction to ISOL and PhysicsLow-energy and stopped beam experimentsMasses, charge radii, exotic decaysPost-accelerated ISOL beamsCoulex and fusionConclusions I am thankful to many colleagues, in particular to C. Gross, P. Butler, G. Bollen, J.-M- Poutissou and P. Van Duppen

  2. In Flight ISOL meV to 100 MeV/u (ms to several s) light ions, neutrons heavy ions driver accelerator thin target high-temperature thick target ion source RILIS IGISOL (ms) fragment separator mass separator gas catcher (ms) NEW !!! Cooling & trapping Charge breeding experiment storage ring cooling experiment post accelerator GeV/u (s)

  3. of ISOL facilities IGISOL Jyväskylä LISOL Leuven LEBIT-MSU ISOL-JAERI ANL SHIPTRAP GSI ISAC TRIUMF SPIRAL GANIL ISOLDE CERN SLOWRIRIKEN HRIBF Oak Ridge EXCYT Catania + IGISOLs at Sendai and Warsaw Thick target ISOL IGISOL / gas catcher

  4. RIB Physics Reach ISOL

  5. A major question: SHELL STRUCTURE FAR FROM STABILITY ? IMPACT ON R-PROCESS ? ? Spin-orbit ? Pairing ? Effective force ? -tensor force Continuum-coupling?…… B. Pfeiffer et al. Acta Phys. Polon. B27(1996)

  6. Shell gap energy and magicity ? – HFB + SkP calculation 100Sn 48Ca NEW ISOL-DATA !!! 78Ni J.Dobaczewski and W.Nazarewicz Phil. Trans. R. Soc. Lond. A356, 2007 (1998) 208Pb 132Sn

  7. Direct Mass Measurement Techniques ESR-TOF ESR Schottky -4 10 SPEG TOFI m -5 10 / m d Y C -6 10 A R U C C -7 A 10 Penning traps -8 10 3 -4 -3 -2 -1 0 1 2 10 10 10 10 10 10 10 10 HALF-LIFE RANGE [s] D. Lunney, et al., Rev. Mod. Ph. 75(2003)1021

  8. Penning trap dM/M < 10-5 B dM/M < 10-7 STEPS of measurement: * cooling and bunching in buffer gas filled RFQ (ms) * mass selective cooling & purification in preparation Penning trap (> 10 ms); R=105 * mass measurement or isomer separation in precision Penning trap (100 ms); R=106 For details: See A. Jokinen (A1-4), S. George (F9-4), P. Schury (H2-6), J. Dilling (J2-1), A. Herlert (QW-071), A. Jokinen (QT227)

  9. Penning trap dM/M < 10-5 ISOLTRAP B 1 cm B = 6 T LEBIT  100 MeV/u  1 eV m c 1 dM/M < 10-7 Beam preparation Gas stopping Penning trap mass measurements Laser spectroscopy soon B = 4.7 T 1 m m c 5 B u n c h e s , 3 k e V e n e r g y 6 0 k e V I S O L D E - 6 0 0 0 0 V i o n b e a m Linear RFQ trap CERN Jyväskylä JYFLTRAP T. Eronen, et al., Phys. Rev. Lett. 97, 232501 (2006) A. Herlert, et al., Int. J. Mass Spectrom. 251, (2006) 131 NSCL-MSU PERFORMANCE: R = 107 → δm/m ≥ 8  10-9 [18] G. Bollen, D. Davies, M. Facina, et al., Phys. Rev. Lett. 96, 152501 (2006).

  10. 82 126 50 82 28 20 50 28 8 20 8 Highlights of nuclear mass measurements at ISOL facilities CPT @ Argonne: 46V, 64Ge heavy fission products SHIPTRAP @ GSI: masses of rp nuclei drip-line nuclei LEBIT @ MSU: 38Ca, 70mBr, 68Se 44S, n-rich 65Fe and 66Co ISOLTRAP @ CERN: ~300 isotopes measured 22Mg,32Ar, 72Kr 74Rb, 81Zn, 133Sn JYFLTRAP @ Jyväskylä: ~200 isotopes measured 26Si, 62Ga, 92Rh fission products; 83Ga, 110Mo

  11. New mass measurements of fission products 100Sn 132Sn ISOLTRAP at CERN JYFLTRAP STABLE 189 NEW MASSES T1/2 ≈ 100 ms Niobium ? 92Br: Sn=3.2 MeV 78Ni

  12. EVOLUTION OF N=50 SHELL GAP 48 50 46 52 54 90Zr Next critical mass: 82Zn !! ISOLTRAP ??? 78Ni

  13. Highlights of laser spectroscopy at ISOL facilities Isotopes measured by laser spectroscopy -H.-J. Kluge and W. NörtershäuserSpectrochim. Acta B 58,(2003) 1031 • Measured at IGISOL • cooled and bunched ion beams • refractory element multi-qp isomers; IGISOL 130mBa (10 ms), 178m1Hf… n-rich yttrium isotopes; IGISOL * 31Mg HFS+bNMR; ISOLDE n-rich Be; SLOWRI @ RIKEN 11Li (8.5 ms); ISAC *, 6He; ANL Next 8He at GANIL ?

  14. Experimental setup Ion Signal CO-Laser 2 Electrostatic Laser @ Lenses 735 nm Laser @ 610 nm PZT Magnet 6,7,8,9,11Li Resonance Ionization of 11Li 3.104 Atoms/s Technique developed at GSI. Lithium atomic levels 5.4 eV 3d2D3/2,5/2 t = 30 ns 3s2S1/2 610 nm 735 nm 2p2P1/2,3/2 735 nm 2s2S1/2

  15. I. Tanihata et. al. PRL 55, 2676 (1985) I. Tanihata et. al. PL B 206, 592 (1988) Results: Nuclear Charge Radii R. Sánchez et al., PRL 96, 033002 (2006) Nature Physics 2, 145 (2006) M. Puchalski et al., PRL 97, 133001 (2006) This surprising result indicates that the Li-core is indeed strongly perturbed or polarized by interactions between halo neutrons and core nucleons.

  16. Beam cooling and bunching with RFQ A. Nieminen, et al., Nucl. Instr. Meth. B 204 (2003) 563 Ion beam cooler Light collection region (Laser resonance fluorescence) 174Hf +40 kV Reduces energy spread of ion beam (< 1eV) 2∙104 improvement of SNR ! Allows to work with 100 ions/s rates Improves emittance of ion beam Traps and accumulates ions – typically 100 - 500 ms Releases ions in a 10 µs bunch

  17. Yttrium charge radii Shape coexistence! B. Cheal et al., Phys. Lett. B 645, 133 - 137 (2007). Increased binding due to large prolate deformation! Result very similar to neighboring Sr and Zr chains

  18. 82 126 50 82 28 20 50 28 8 20 8 Highlights of decay studies at ISOL facilities ISOL at GSI: * 2He decay of 94mAg ISOL @ JAERI: Heavy fission products Several facilities: * Superallowed b-decays 22Mg, 26Al,…62Ga,74Rb ISOLDE: 132Sn-region spectroscopy JYFLTRAP @ Jyväskylä: Trap-assisted spectroscopy 104Zr,113Tc,… HRIBF at Oak Ridge: Ranging out spectroscopy 79Cu, 85Ga,… LISOL at Leuven: RILIS in decay studies 67mCo,… ISOLDE & IGISOL: Triple-a structure of 12C 12N & 12B b-3a decay

  19. K 1+dNS ’ - d = º + d ) Ft ft ( 1 )( C R + D 2 V 2 G ( 1 ) V R 54Co 50Mn 46V 42Sc 38mK 26mAl 34Cl 14O 10C Ft = 3072.7 ± 0.8 s Vud = 0.9738 (4) From Ft and GA of muon decay CVC and the unitarity of the CKM matrix ! J.C Hardy and I.S. Towner, Phys. Rev. C 71(2005)055501 Unitarity of CKM matrix? D= -0.0034(14) !! • Alarming new result of QEC of 46V from CPT • and JYLFTRAP: D(QEC)=2.2 (9) keV ? --> Need to check all QEC values ! New Q-value determinations with Penning Traps 22Mg M. Mukherjee et al., Phys. Rev. Lett. 93 (2004) 150801 26Alm,42Sc, 46V T. Eronen et al., Phys. Rev. Lett. 97 (2006) 232501 34Ar F. Herfurth et al., Eur. Phys. J. A 15 (2002) 17 38Ca G. Bollen et al., Phys. Rev. Lett. 96 (2006) 152501 46V G. Savard et al,, Phys. Rev. Lett. 95 (2005) 102501 62Ga T. Eronen et al., Phys. Lett. B 636 (2006) 191 74Rb A. Kellerbauer et al., Phys. Rev. Lett. 93 (2004) 072502

  20. New data (ISOLDE, ISAC, IGISOL, CPT) New yet unpublished measurements 26Al, 26Si, 42Ti, 50Mn, 54C0

  21. Current Status – CKM Matrix Unitarity check via the matrix elements of the first row: Vus and Vub from particle physics data (K and B meson decays) • Most precise Vud From nuclear β decay ! • 4th Int. Workshop on the CKM Unitarity Triangle, Nagoya, 12/2006 Vud = 0.97378(27) J. C. Hardy, ArXiV:hep-ph/0703165v1 M. Moulson, ArXiV:hep-ph/0703013 Confirms the unitarity, but more work needed on theoretical corrections as well as new data!

  22. Post-accelerated ISOL

  23. Coulomb excitation of even-even Zn isotopes up to N=50 * 78Ga 108Pd 78Zn 80 60 • 78Zn (T1/2=1.5 s) @ 108Pd(2.0 mg/cm2) • Energy = 2.87 MeV/u • Intensity = 4300 pps • Purity = 64 (13) % 730 keV: 2+-0+ 40 counts laser on laser off 20 0 0 500 1000 1500 2000 • 80Zn (T1/2=0.5 s) @ 108Pd(2.0 mg/cm2) • Energy = 2.79 MeV/u • Intensity = 3000 pps • Purity = 43 (5) % 800 80Zn x 50 600 1492 keV: 2+-0+ 108Pd 80Ga counts 400 200 0 0 500 1000 1500 2000 * J. Van de Walle et al., to be published energy (keV)

  24. N=50 isotones Ni,Zn,Ge isotopes this work E(2+1) [keV] E(2+1) [keV] Result in conformity with the new mass data ! Ge B(E2,2+10+1) [W.u.] B(E2,2+10+1) [W.u.] Zn Ni Proton Number Neutron Number Ge up to N=50: HRIBF exp: Phys. Rev. Lett. 94(2005)122501

  25. Enhancement of 9Li sub-barrier fusion ISAC I at TRIUMF • W. Loveland et al, Physical Review C 74(2006) 064609

  26. Fusion with heavy n-rich radioactive beams • Large sub-barrier fusion enhancement • Inelastic excitation and neutron transfer play an important role in the observed fusion enhancement • Important for superheavy element synthesis • ERs made with 132,134Sn cannot be made with stable Sn! Shapira et al., Eur. Phys. J. A 25, s01, 241 (2005) Liang et al., PRL 91, 15271 (2003); PRC 75, 054607 (2007)

  27. Fusion with n-deficient radioactive beams 130Nd (4p) 131Pm (3p) 129Pr (5p) 76Kr + 58Ni SPIRAL(GANIL)

  28. Traditional ISOL method is succesfully complemented by IGISOL and gas catcher techniques gaining universality in RIB production Novel ion manipulation techniques (RFQ, charge breeding, ion traps,…) have made significant impact towards high-sensitivity and precision experiments Penning trap technique coupled with an ISOL method opens new opportunities for mass and spectroscopy measurements About 500 atomic masses measured with precision better than 10 keV Mass derivatives can probe nuclear structure (deformation, shell gaps) Evidence observed for the persistence of the neutron shell gap towards 78Ni Post-accelerated RIBs start producing physics on n-rich nuclei Coulex and transfer reaction experiments shown feasible Isomeric beam production demonstrated Role of ”magic” numbers far from stability Results on N=20, 50 and 82 n-rich nuclei Conclusions ISOL & future: Intensity and precision frontier !

  29. J. Pearson, S. Goriely Nuclear Physics A 777(2006)623 Fit to 2149 measured masses (AME03) P. Möller et al. ADNDT 59(1995)185 M. Stoitsov, et al, Phys. Rev. Lett. 98, 132502 (2007) HFB-THO + density functional theory Shell Gap Energies from Theory

More Related