1 / 5

Factoring Special Cases

Factoring Special Cases. ALGEBRA 1 LESSON 9-7. pages 493–495  Exercises 1. ( c + 5) 2 2. ( x – 1) 2 3. ( h + 6) 2 4. ( m – 12) 2 5. ( k – 8) 2 6. ( t – 7) 2 7. (2 m + 5) 8. (7 d + 2) 9. (5 g – 4) 10. (5 g – 3) 2 11. (8 r – 9) 2. 12. (10 v – 11) 2

Download Presentation

Factoring Special Cases

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Factoring Special Cases ALGEBRA 1 LESSON 9-7 pages 493–495  Exercises 1. (c + 5)2 2. (x – 1)2 3. (h + 6)2 4. (m – 12)2 5. (k – 8)2 6. (t – 7)2 7. (2m + 5) 8. (7d + 2) 9. (5g – 4) 10. (5g – 3)2 11. (8r – 9)2 12. (10v – 11)2 13. (x + 2)(x – 2) 14. (y + 9)(y – 9) 15. (k + 14)(k – 14) 16. (r + 12)(r – 12) 17. (h + 10)(h – 10) 18. (m + 15)(m – 15) 19. (w + 16)(w – 16) 20. (x + 20)(x – 20) 21. (y + 30)(y – 30) 22. (5q + 3)(5q – 3) 23. (7y + 2)(7y – 2) 24. (3c + 8)(3c – 8) 25. (2m + 9)(2m – 9) 26. (4k + 7)(4k – 7) 27. (12p + 1)(12p – 1) 28. (9v + 10)(9v – 10) 29. (20n + 11)(20n – 11) 30. (5w + 14)(5w – 14) 31. 3(m + 2)(m – 2) 32. 5(k + 7)(k – 7) 33. 3(x + 8)2 34. 2(t – 9)2 35. 6r(r + 5)(r – 5) 9-7

  2. Factoring Special Cases ALGEBRA 1 LESSON 9-7 44.a. Answers may vary. Sample: 4x2 + 24x + 36 b. because (2x)2 = 4x2, 2(2x • 6) = 24x, and 62 = 36 45. 25(2v + w)(2v – w) 46. 4(2p – 3q)2 47. 7(2c + 5d)2 48.m + m – 49.x + 50. 16(2g – 3h)2 51.p – 2 36. 7(h – 4)2 37. Answers may vary. Sample: Rewrite the first and last terms as a square. Check to see if the middle term is 2ab. Factor as a square binomial: 4x2 + 12x + 9 = (2x)2 + 12x + 32 = (2x)2 + 2(2x)(3) + 32 = (2x + 3)2; 9x2 – 30x + 25 = (3x)2 – 30x + 52 = (3x)2 – 2(3x)(5) + 52 = (3x – 5)2. 38. 4x2 – 121 is the difference of two squares. So the answer should be (2x + 11)(2x – 11). 39. 11, 9 40. 13, 7 41. 15, 5 42. 13, 9 43. 16, 14 1 2 1 3 1 2 1 3 1 2 2 2 1 2 9-7

  3. Factoring Special Cases ALGEBRA 1 LESSON 9-7 52.n + n – 53.k + 3 54.a. 3.14n2 – 3.14m2 = 3.14(n + m)(n – m) b. 285.74 in.2 55.a. 4(x + 5)(x – 5) b. 4(x + 5)(x – 5) c. The polynomial has a GCF that has two identical factors. d. 3(x + 5)(x – 5); no, because 3 does not have a pair of identical factors. 56. (8r3 – 9)2 57. (p3 + 20q)2 58. (6m2 + 7)2 59. (9p5 + 11)2 60. 3(6m3 – 7)(6m3 + 7) 61. (x10 – 2y5)2 62. 4(8g2 – 5h3)(8g2 + 5h3) 63. 5(3x2 – 2y)2 64. 37(g4 + h4)(g2 + h2)(g + h)(g – h) 65.a.t – 3; 4 b. (t + 1)(t – 7) 1 3 1 5 1 3 1 5 1 5 2 9-7

  4. Factoring Special Cases ALGEBRA 1 LESSON 9-7 75. (2t + 1)(2t + 7) 76. (5w + 1)(w – 9) 77. (3t + 8)(2t + 1) 78. (7m – 9)(3m + 1) 79. (7x – 9)(2x + 1) 80. (2y + 11)(2y + 5) 81. (3k – 2)(4k + 1) 82. 768; 3072; 12,288; 3 • 4n-1 83. 29; 37; 45; –11 + 8n 84. –11; –20; –29; 34 – 9n 85. 0.02; 0.002; 0.0002; 2000 • n 86. –32; 64; –128; (–2)n 66. a. (4 + 9n2)(2 + 3n)(2 – 3n) b. They are squares of square terms. c. Answers may vary. Sample: 16x4 – 1 67. 9 68. –12 69. 30 70. 5 71. 12 72. 2.5 73. (2d + 1)(d + 5) 74. (2x – 3)(x – 4) 1 10 9-7

  5. 87. 129.6; 777.6; 4665.6; 0.1(6)n–1 88. ; ; ; 10 • 89. 6 ; 8; 9 ; –1 + n 90. 8; 32; 128; • 4n–1 or • 4n–3 91.a.y = 11.4x + 64.8 b. 93 c. 79 87. 129.6; 777.6; 4665.6; 0.1(6)n–1 88. ; ; ; 10 • 89. 6 ; 8; 9 ; –1 + n 90. 8; 32; 128; • 4n–1 or • 4n–3 91.a.y = 11.4x + 64.8 b. 93 c. 79 87. 129.6; 777.6; 4665.6; 0.1(6)n–1 88. ; ; ; 10 • 89. 6 ; 8; 9 ; –1 + n 90. 8; 32; 128; • 4n–1 or • 4n–3 91.a.y = 11.4x + 64.8 b. 93 c. 79 32 125 32 125 32 125 64 625 64 625 64 625 128 3125 128 3125 128 3125 2 5 2 5 2 5 n–1 n–1 n–1 1 2 1 2 1 2 1 2 1 2 1 2 3 2 3 2 3 2 1 32 1 32 1 32 1 2 1 2 1 2 Factoring Special Cases ALGEBRA 1 LESSON 9-7 9-7

More Related