300 likes | 740 Views
Week 8b. OUTLINE Using pn-diodes to isolate transistors in an IC The metal-oxide-field-effect transistor (MOSFET) Structure of the MOSFET The MOSFET as a controlled resistance Pinch-off and current saturation in the MOSFET Channel-length modulation
E N D
Week 8b OUTLINE Using pn-diodes to isolate transistors in an IC The metal-oxide-field-effect transistor (MOSFET) Structure of the MOSFET The MOSFET as a controlled resistance Pinch-off and current saturation in the MOSFET Channel-length modulation Velocity saturation in a short-channel MOSFET Reading Rabaey et al. Ch. 3.3.1-3.3.2 Hambley Ch. 12.1
Why are pn Junctions Important for ICs? • The basic building block in digital ICs is the MOS transistor, whose structure contains reverse-biased diodes. • pn junctions are important for electrical isolation of transistors located next to each other at the surface of a Si wafer. • The junction capacitance of these diodes can limit the performance (operating speed) of digital circuits
regions of n-type Si n n n n n p-type Si n-region n-region p-region Device Isolation using pn Junctions a b No current flows if voltages are applied between n-type regions, because two pn junctions are “back-to-back” a b => n-type regions isolated in p-type substrate and vice versa
Dynamic Random-Access Memory (DRAM) W o rd Line Row Address Decoder Bit Line Column Drivers and Sense Amplifiers Column Address Decoder/Selector Figure 0.1 Example of a densely populated integrated circuit – the DRAM
n n n n Transistor A Transistor B p-type Si We can build large circuits consisting of many transistors without worrying about current flow between devices. The p-n junctions isolate the transistors because there is always at least one reverse-biased p-n junction in every potential current path.
Modern Field Effect Transistor (FET) • An electric field is applied normal to the surface of the semiconductor (by applying a voltage to an overlying “gate” electrode), to modulate the conductance of the semiconductor • Modulate drift current flowing between 2 contacts (“source” and “drain”) by varying the voltage on the “gate” electrode Metal-oxide-semiconductor (MOS) FET:
L = channel length W • W = channel width n n L oxide insulator MOSFET • NMOS:N-channel Metal • Oxide Semiconductor GATE “Metal” (heavily doped poly-Si) DRAIN p-type silicon SOURCE • A GATE electrode is placed above (electrically insulated from) the silicon surface, and is used to control the resistance between the SOURCE and DRAIN regions
n n gate oxide insulator N-channel MOSFET Gate IG Drain Source IS ID p • Without a gate-to-source voltage applied, no current can flow between the source and drain regions. • Above a certain gate-to-source voltage (threshold voltageVT), a conducting layer of mobile electrons is formed at the Si surface beneath the oxide. These electrons can carry current between the source and drain.
n+ poly-Si p+ poly-Si p-type Si n-type Si N-channel vs. P-channel MOSFETs • For current to flow, VGS > VT • Enhancement mode: VT > 0 • Depletion mode: VT < 0 • Transistor is ON when VG=0V NMOS PMOS n+ n+ p+ p+ • For current to flow, VGS < VT • Enhancement mode: VT < 0 • Depletion mode: VT > 0 • Transistor is ON when VG=0V (“n+” denotes very heavily doped n-type material; “p+” denotes very heavily doped p-type material)
n+ poly-Si p+ poly-Si Body Body p-type Si n-type Si MOSFET Circuit Symbols G G NMOS n+ n+ S S G G PMOS p+ p+ S S
MOSFET Terminals • The voltage applied to the GATE terminal determines whether current can flow between the SOURCE & DRAIN terminals. • For an n-channel MOSFET, the SOURCE is biased at a lower potential (often 0 V) than the DRAIN (Electrons flow from SOURCE to DRAIN when VG > VT) • For a p-channel MOSFET, the SOURCE is biased at a higher potential (often the supply voltage VDD) than the DRAIN (Holes flow from SOURCE to DRAIN when VG < VT ) • The BODY terminal is usually connected to a fixed potential. • For an n-channel MOSFET, the BODY is connected to 0 V • For a p-channel MOSFET, the BODY is connected to VDD
+ + NMOSFET IGvs.VGS Characteristic Consider the current IG (flowing into G) versus VGS : IG G S D VDS oxide semiconductor VGS IG The gate is insulated from the semiconductor, so there is no significant steady gate current. always zero! VGS
The MOSFET as a Controlled Resistor • The MOSFET behaves as a resistor when VDS is low: • Drain current ID increases linearly with VDS • Resistance RDS between SOURCE & DRAIN depends on VGS • RDS is lowered as VGS increases above VT NMOSFET Example: oxide thickness tox ID VGS = 2 V VGS = 1 V > VT VDS Inversion charge density Qi(x) = -Cox[VGS-VT-V(x)] where Coxeox / tox IDS = 0 if VGS< VT
V I _ + W t homogeneously doped sample L Sheet Resistance Revisited Consider a sample of n-type semiconductor: where Qn is the charge per unit area
+ + VGS > VT zero if VGS< VT NMOSFET IDvs.VDS Characteristics Next consider ID (flowing into D) versus VDS, as VGS is varied: ID G S D VDS oxide semiconductor VGS ID Above threshold (VGS > VT): “inversion layer” of electrons appears, so conduction between S and D is possible VDS Below “threshold” (VGS < VT): no charge no conduction
MOSFET as a Controlled Resistor (cont’d) We can make RDS low by • applying a large “gate drive” (VGS VT) • making W large and/or L small average value of V(x)
Charge in an N-Channel MOSFET VGS < VT: depletion region (no inversion layer at surface) VGS > VT : VDS 0 VDS > 0 (small) Average electron velocity v is proportional to lateral electric field E
What Happens at Larger VDS? VGS > VT : VDS = VGS–VT Inversion-layer is “pinched-off” at the drain end VDS > VGS–VT • As VDS increases above VGS–VT VDSAT, • the length of the “pinch-off” region DL increases: • “extra” voltage (VDS – VDsat) is dropped across the distance DL • the voltage dropped across the inversion-layer “resistor” remains VDsat • the drain current ID saturates Note: Electrons are swept into the drain by the E-field when they enter the pinch-off region.
Summary of IDvs.VDS • As VDS increases, the inversion-layer charge density at the drain end of the channel is reduced; therefore, ID does not increase linearly with VDS. • When VDS reaches VGS VT, the channel is “pinched off” at the drain end, and ID saturates (i.e. it does not increase with further increases in VDS). + – pinch-off region
IDvs.VDS Characteristics • The MOSFET ID-VDS curve consists of two regions: • 1) Resistive or “Triode” Region: 0 < VDS < VGS VT • 2) Saturation Region: • VDS > VGS VT process transconductance parameter “CUTOFF” region: VG < VT
Channel-Length Modulation • If L is small, the effect of DL to reduce the inversion-layer “resistor” length is significant • ID increases noticeably with DL (i.e. with VDS) ID ID= ID(1 + lVDS) l is the slope ID is the intercept VDS
Velocity Saturation At high electric fields, the average velocity of carriers is NOT proportional to the field; it saturates at ~107 cm/sec for both electrons and holes:
Current Saturation in Modern MOSFETs • In digital ICs, we typically use transistors with the shortest possible gate-length for high-speed operation. • In a very short-channel MOSFET, ID saturates because the carrier velocity is limited to ~107 cm/sec v is not proportional to E, due to velocity saturation
Consequences of Velocity Saturation 1. ID is lower than that predicted by the mobility model 2. ID increases linearly with VGS VT rather than quadratically in the saturation region
P-Channel MOSFET IDvs. VDS • As compared to an n-channel MOSFET, the signs of all the voltages and the currents are reversed: Note that the effects of velocity saturation are less pronounced than for an NMOSFET. Why is this the case? Short-channel PMOSFET I-V