1 / 56

Coloring Mixed Hypergraphs: some new results and open problems

Coloring Mixed Hypergraphs: some new results and open problems. Vitaly I. Voloshin Troy University. Troy Math Fest March 29. Troy MathFest contacts:. Outline:. Terminology 1-realizations Sigma- hypergrahs Ramsey Mixed Hypergraphs Miscellaneous. Terminology.

mikel
Download Presentation

Coloring Mixed Hypergraphs: some new results and open problems

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Coloring Mixed Hypergraphs: some new results and open problems Vitaly I. Voloshin Troy University

  2. Troy Math Fest March 29

  3. Troy MathFest contacts:

  4. Outline: • Terminology • 1-realizations • Sigma-hypergrahs • Ramsey Mixed Hypergraphs • Miscellaneous

  5. Terminology

  6. 1. Intro: Basic concepts: • Let V = {v1, v2, . . . , vn} be a finite set of elements called vertices, and let E = {E1, E2, . . . ,Em} be a family of subsets of V called edges or hyper-edges. • The pair H = (V, E) is called a hypergraph with vertex-set V and with edge-set E. • For 1 ≤ r ≤ n, we define the r-uniform hypergraph to be the hypergraph H= (V, E) where every edge contains r vertices.

  7. Mixed Hypergraph: • Mixed hypergraph is a tripleH=(X,C,D), where X={x1,x2,…,xn}, n ≥ 1, is the vertex set, C and D are the families of subsets of X, each of size ≥ 2 . • Every member of C is called C-edge and every member of D is called D-edge.

  8. Proper λ-coloring: Proper λ -coloring of H=(X, C, D) is a mapping from Xinto the set of colors {1,2,…λ} such that: Each C-edge has at least 2 vertices of a Common color. Each D-edge has atleast 2 vertices of Distinct colors. “C-” stands for “common” and “D-” stands for “distinct” colors.

  9. Proper λ-coloring strict i-coloring lower χ and upper χ chromatic numbers feasiblepartition feasible set S(H) chromatic spectrum: R(H) = (r1, r2, …, rn)= (0,…,0,rχ,…,rχ,0,…,0)

  10. Special cases: • If H=(X, Ø, D), then it is a classic hypergraph, called now D-hypergraph and R(H)=(0,…,0, rχ,…, rn-1,1), S(H) is an interval of integers [χ,…,n]. • If H=(X, C, Ø), then it is called C-hypergraph, and R(H)=(1, r2,…,rχ,0,…0), S(H) is an interval of integers [1,…, χ]. • If C=D, then the mixed hypergraph H=(X, C, D)=(X, B) is called a bi-hypergraph

  11. 1-realizations

  12. What is 1-realization? • For a given 0-1 sequence a=010011011… a mixed hypergraph H=(X, C, D) is called 1-realization if the chromatic spectrum R(H)=(0,1,0,0,1,1,0,1,1,…) ( S(H)={2,5,6,8,9,…})

  13. The only 1-realizations in Graph Coloring: complete graphs Chromatic spectrum : R(K_5)=(0,0,0,0,1) Feasible set: S(K_5)={5} Every color class = singleton

  14. 1-realizations in mixed hypergraphs C-edges Chromatic spectrum : R(H)=(0,0,0,0,1,0,0) Feasible set: S(H)={5} χ =χ = 5

  15. Tuza, Voloshin, Zhou, 2002 • Any mixed hypergraph can be embedded as induced sub-hypergraph of some uniquely colorable mixed hypergraph. • Any proper coloring of any mixed hypergraph can “freeze” to be a unique coloring of a larger uc-hypergraph

  16. Can we find=construct 1-realization for any 0-1 sequence? • For example, can we have a mixed hypergraph H with • R(H)=(0,1,0,1,0,1,1,0,1,0,…)? • YES WE CAN! (do not confuse with politics!)

  17. The smallest m.h. with two 1’s and a gap: unique 4-coloring D D C C D D D C C D R(H’)=(0,1,0,1,0,0), S(H)={2,4}

  18. Unique 2-coloring: D D C C D D D C C D R(H’)=(0,1,0,1,0,0), S(H)={2,4}

  19. Here is the general problem: • Given any 0-1 sequence, find an r-uniform bi-hypergraph with the minimum number of vertices such that its chromatic spectrum equals the sequence. • Equivalently, given a set of integers S, find the same such that its feasible set equals S.

  20. The very first result:

  21. The newest paper (submitted):

  22. The main result:

  23. The last of 11 constructions:

  24. Sigma-Hypergraphs

  25. Very recent:

  26. Definition:

  27. Simple example: H(6,3,2 |(1,2)) S={2,n} No colorings with 3,4,…,n-1 colors Each pair should be monochromatic (n-coloring) or colored 1, 2 (2- coloring). n=6, r=3, q=2, sigma=(1,2)

  28. Some results:

  29. Re-appearance of gaps

  30. Ramsey Mixed Hypergraphs

  31. Axenovich, Iverson, 2008:

  32. Axenovich, Choi, 2011:

  33. References

  34. Meanwhile, VV, res. mon. 2002:

  35. Meanwhile, VV 2002:

  36. Meanwhile, VV 2002:

  37. Ramsey Mixed Hypergraph: • Take a hypergraph H=(X,E); • Every edge of H becomes a vertex of RMH; • Declare “each copy of H1” to be a C-edge; • Declare “each copy of H2” to be a D-edge. • RMH=(E, C, D) is a Ramsey Mixed Hypergraph • NOTATION: RMH=(H, H1, H2).

  38. All the problems of M.H.C. apply: • Determine colorability • Find both chromatic numbers • Determine the feasible set • Determine gaps in the chromatic spectrum • Determine the bounds on the chromatic spectrum • Determine the chromatic spectrum itself • Etc.

  39. For H=(K_4, K_3, K_3):

  40. Ramsey m.h. (K_4, K_3, K_3) itself: 1 6 4 5 3 2

  41. Next cases – work in progress • Ramsey m.h. (K_5, K_3, K_3) will have • 10 vertices • 10 edges, R(H)=(0,6,164,105,0…0) • Ramsey m.h. (K_6, K_3, K_3) will have: • 15 vertices • 20 edges and R(H)=(0,0,?,?…0) –work in progress • Generally n(n-1)/2 v. and n(n-1)(n-2)/6 e. Ramsey number R(3,3)=6

  42. A look back in the history…

  43. Translation English ->English • A family F of edge colored graphs is a Ramsey family provided that for any edge coloring of a sufficiently large complete graph Kn there is an isomorphic copy of at least one of the colored graphs in F. • P. Erdös and R. Rado proved [J. London Math. Soc. 25 (1950), 249–255; MR0037886 (12,322f)] that a family F is Ramsey if it contains a monochromatic graph H^mono, a rainbow colored graph H^rain, and a lexically colored complete graph H^lex

  44. What would be “nice” to find? Empty graph E_5 What is R(E_5)?

  45. What would be “nice” to find? Everybody knows Stirling numbers of the 2nd kind: = chromatic spectrum of E_n :

  46. What would be “nice” to find? Tree T_5 What is R(T_5)?

  47. What would be “nice” to find? Trees T_n= 1-trees

  48. What would be “nice” to find? 2-Tree = chordal graph What is R(2T_5)?

  49. What would be “nice” to find? Chordal graphs = 2-trees  chromatic spectrum is shifted 2 positions to the right

  50. What would be “nice” to find NOW? • Given chromatic spectrum of the RMH H=(K_n, K_p, K_q), how to calculate the chromatic spectrum of the RMHH_1=(K_{n+1}, K_p, K_q)? • Is there any recurrent relation?

More Related