1 / 20

Linkage Disequilibrium Mapping - Natural Population

Linkage Disequilibrium Mapping - Natural Population. Put Markers and Trait Data into box below. OR. Linkage Disequilibrium Mapping - Natural Population. Initial value of p11, p10, p01:. Linkage Disequilibrium Mapping - Natural Population. Linkage disequilibrium mapping – natural population.

mikkel
Download Presentation

Linkage Disequilibrium Mapping - Natural Population

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Linkage Disequilibrium Mapping - Natural Population Put Markers and Trait Data into box below OR

  2. Linkage Disequilibrium Mapping - Natural Population Initial value of p11, p10, p01:

  3. Linkage Disequilibrium Mapping - Natural Population

  4. Linkage disequilibrium mapping – natural population Mixture model-based likelihood Height markers Sample (cm, y) m1 m2 m3 … 1 184 1 1 2 2 185 2 2 0 3 180 0 1 1 4 182 1 2 2 5 167 2 0 1 6 169 1 2 1 7 165 2 1 2 8 166 0 0 0

  5. Linkage disequilibrium mapping – natural population Association between marker and QTL -Marker, Prob(M)=p, Prob(m)=1-p -QTL, Prob(Q)=q, Prob(q)=1-q Four haplotypes: Prob(MQ)=p11=pq+D p=(p11+p10) Prob(Mq)=p10=p(1-q)-D q=(p11+p01) Prob(mQ)=p01=(1-p)q-D D=p11p00-p10p01 Prob(mq)=p00=(1-p)(1-q)+D Estimatep, q, D AND 2 , 1 , 0

  6. Linkage disequilibrium mapping – natural population Mixture model-based likelihood L(y,M|)=i=1n[2|if2(yi) + 1|if1(yi) + 0|if0(yi)] Sam- Height Marker genotype QTL genotype ple (cm, y) MQQQq qq 1 184 MM (2) 2|i1|i 0|i 2 185 MM (2) 2|i1|i 0|i 3 180 Mm (1) 2|i1|i 0|i 4 182 Mm (1) 2|i1|i 0|i 5 167 Mm (1) 2|i1|i 0|i 6 169 Mm (1) 2|i1|i 0|i 7 165 mm (0) 2|i1|i 0|i 8 166 mm (0) 2|i1|i 0|i Prior prob.

  7. Joint and conditional (j|i) genotype prob. between marker and QTL QQ Qq qq Obs MM p112 2p11p10 p102 n2 Mm 2p11p01 2(p11p00+p10p01) 2p10p00 n1 mm p012 2p01p00 p002 n0 MM p112 2p11p10 p102 n2 p2p2p2 Mm 2p11p01 2(p11p00+p10p01) 2p10p00 n1 2p(1-p) 2p(1-p) 2p(1-p) mm p012 2p01p00 p002 n0 (1-p)2 (1-p)2 (1-p)2

  8. Linkage disequilibrium mapping – natural population Conditional probabilities of the QTL genotypes (missing) based on marker genotypes (observed) L(y,M|) = i=1n [2|if2(yi) + 1|if1(yi) + 0|if0(yi)] = i=1n2 [2|2f2(yi) + 1|2f1(yi) + 0|2f0(yi)] Conditional on 2 (n2) i=1n1 [2|1f2(yi) + 1|1f1(yi) + 0|1f0(yi)] Conditional on 1 (n1) i=1n0 [2|0f2(yi) + 1|0f1(yi) + 0|0f0(yi)] Conditional on 0 (n0)

  9. Linkage disequilibrium mapping – natural population Normal distributions of phenotypic values for each QTL genotype group f2(yi) = 1/(22)1/2exp[-(yi-2)2/(22)], 2 =  + a f1(yi) = 1/(22)1/2exp[-(yi-1)2/(22)], 1 =  + d f0(yi) = 1/(22)1/2exp[-(yi-0)2/(22)], 0 =  - a

  10. Linkage disequilibrium mapping – natural population Differentiating L with respect to each unknown parameter, setting derivatives equal zero and solving the log-likelihood equations L(y,M|) = i=1n[2|if2(yi) + 1|if1(yi) + 0|if0(yi)] log L(y,M|) = i=1n log[2|if2(yi) + 1|if1(yi) + 0|if0(yi)] Define 2|i= 2|if1(yi)/[2|if2(yi) + 1|if1(yi) + 0|if0(yi)] (1) 1|i= 1|if1(yi)/[2|if2(yi) + 1|if1(yi) + 0|if0(yi)] (2) 0|i= 0|if1(yi)/[2|if2(yi) + 1|if1(yi) + 0|if0(yi)] (3) 2 = i=1n(2|iyi)/ i=1n1|i (4) 1 = i=1n(1|iyi)/ i=1n1|i (5) 0 = i=1n(0|iyi)/ i=1n0|i (6) 2 = 1/ni=1n[1|i(yi-1)2+0|i(yi-0)2] (7)

  11. Incomplete (observed) data Posterior prob QQ Qq qq Obs MM 2|2i1|2i 0|2i n2 Mm 2|1i1|1i 0|1in1 mm 2|0i1|0i 0|0in0 p11=1/2n{i=1n2[22|2i+1|2i]+ i=1n1[2|1i+1|1i], (8) p10=1/2n{i=1n2[20|2i+1|2i]+ i=1n1[0|1i+(1-)1|1i], (9) p01=1/2n{i=1n0[22|0i+1|0i]+ i=1n1[2|1i+(1-)1|1i], (10) p00=1/2n{i=1n2[20|0i+1|0i]+ i=1n1[0|1i+1|1i] (11)

  12. EM algorithm (1) Give initiate values (0) =(2,1,0,2,p11,p10,p01,p00)(0) (2) Calculate 2|i(1), 1|i(1)and 0|i(1)using Eqs. 1-3, (3) Calculate (1) using 2|i(1), 1|i(1)and 0|i(1)based on Eqs. 4-11, (4) Repeat (2) and (3) until convergence.

  13. PROGRAM: Given a initial 2, 1, 0, 2, p11, p10, p01, p00 mu(1), mu(2), mu(3), s2 Do While (Abs(mu(1) - omu(1)) + Abs(p00 - p00old) > 0.00001) kkk = kkk + 1 ‘cumulate the number of iteration p00old = p00 ‘keep old value of p00 prob(1, 1) = p11 ^ 2 / p ^ 2 ‘prior conditional probability 2|2 prob(1, 2) = 2 * p11 * p10 / p ^ 2 ‘2|1 prob(1, 3) = p10 ^ 2 / p ^ 2 ‘2|0 prob(2, 1) = 2 * p11 * p01 / (2 * p * q) ‘1|2 prob(2, 2) = 2 * (p11 * p00 + p10 * p01) / (2 * p * q) ‘1|1 prob(2, 3) = 2 * p10 * p00 / (2 * p * q) ‘1|0 prob(3, 1) = p01 ^ 2 / q ^ 2 ‘0|2 prob(3, 2) = 2 * p01 * p00 / q ^ 2 ‘0|1 prob(3, 3) = p00 ^ 2 / q ^ 2 ‘0|0

  14. For j = 1 To 3 omu(j) = mu(j) : cmu(j) = 0 : cpi(j) = 0 : bpi(j) = 0 For i = 1 To 3 nnn(i, j) = 0 ’3 by 3 matrix to store2|2, 2|1, 2|0, …. 0|0 Next Next j cs2 = 0 ll = 0 For i = 1 To N sss = 0 For j = 1 To 3 ’f2(yi), f1(yi), f0(yi) f(j) = 1 / Sqr(2 * 3.1415926 * s2) * Exp(-(y(i) - mu(j)) ^ 2 / 2 / s2) sss = sss + prob(datas(i, mrk), j) * f(j) Next j ll = ll + Log(sss) ’calculate log-likelihood For j = 1 To 3 bpi(j) = prob(datas(i, mrk), j) * f(j) / sss ’FORMULA (1-3) cmu(j) = cmu(j) + bpi(j) * datas(i, nmrk) ’ numerator ofFORMULA (4-6) cpi(j) = cpi(j) + bpi(j) ’ denominator ofFORMULA (4-6) cs2 = cs2 + bpi(j) * (y(i) - mu(j)) ^ 2 ’FORMULA (7) nnn(datas(i, mrk), j) = nnn(datas(i, mrk), j) + bpi(j) ’FORMULA (8-11) Next j Next i ‘[2|if2(yi) + 1|if1(yi) + 0|if0(yi)]

  15. ‘ Update 2, 1, 0 formula (4-6) For j = 1 To 3 mu(j) = cmu(j) / cpi(j) Next j ‘Update 2 formula 7 s2 = cs2 / N ‘Update p11, p10, p01, p00 FORMULA (8-11) phi = p11 * p00 / (p11 * p00 + p10 * p01) p11 = (2 * nnn(1, 1) + nnn(1, 2) + nnn(2, 1) + phi * nnn(2, 2)) / 2 / N p10 = (2 * nnn(1, 3) + nnn(1, 2) + nnn(2, 3) + (1 - phi) * nnn(2, 2)) / 2 / N p01 = (2 * nnn(3, 1) + nnn(2, 1) + nnn(3, 2) + (1 - phi) * nnn(2, 2)) / 2 / N p00 = (2 * nnn(3, 3) + nnn(2, 3) + nnn(3, 2) + phi * nnn(2, 2)) / 2 / N p = p11 + p10 q = 1 - p Loop LR = 2 * (ll - ll0)

  16. Linkage Disequilibrium Mapping - Natural PopulationBinary Trait Put Markers and Trait Data into box below OR

  17. Linkage Disequilibrium Mapping - Natural PopulationBinary Trait Initial value of p11, p10, p01: Initial value of f2, f1, f0:

  18. Linkage Disequilibrium Mapping - Natural PopulationBinary Trait Initial value of f2, f1, f0:

  19. Linkage Disequilibrium Mapping - Natural PopulationBinary Trait L(|y)=j=02i=0nj log [2|ijPr{yij=1|Gij=2,}yijPr{yij=0|Gij=2,}(1-yij) +1|ijPr{yij=1|Gij=1,}yijPr{yij=0|Gij=1,}(1-yij) +0|ijPr{yij=1|Gij=0,}yijPr{yij=0|Gij=0,}(1-yij)] =j=02i=0nj log[2|ijf2yij(1-f2)(1-yij)+1|ijf1yij(1-f1)(1-yij)+0|ijf0yij(1-f0)(1-yij)]  = (p11, p10, p01, p00, f2, f1, f0) (6 parameters)

  20. For j = 1 To 3 omu(j) = mu(j) : cmu(j) = 0 : cpi(j) = 0 : bpi(j) = 0 For i = 1 To 3 nnn(i, j) = 0 ’3 by 3 matrix to store2|2, 2|1, 2|0, …. 0|0 Next Next j cs2 = 0 ll = 0 For i = 1 To N sss = 0 For j = 1 To 3 ’f2(yi), f1(yi), f0(yi) f(j) = 1 / Sqr(2 * 3.1415926 * s2) * Exp(-(y(i) - mu(j)) ^ 2 / 2 / s2) f(j)=mu(j) ^ datas(i, nmrk) * (1 - mu(j)) ^ (1 - datas(i, nmrk)) sss = sss + prob(datas(i, mrk), j) * f(j) Next j ll = ll + Log(sss) ’calculate log-likelihood For j = 1 To 3 bpi(j) = prob(datas(i, mrk), j) * f(j) / sss ’FORMULA (1-3) cmu(j) = cmu(j) + bpi(j) * datas(i, nmrk) ’ numerator ofFORMULA (4-6) cpi(j) = cpi(j) + bpi(j) ’ denominator ofFORMULA (4-6) cs2 = cs2 + bpi(j) * (y(i) - mu(j)) ^ 2 ’FORMULA (7) nnn(datas(i, mrk), j) = nnn(datas(i, mrk), j) + bpi(j) ’FORMULA (8-11) Next j Next i

More Related