1 / 16

1.7 Motion in the Coordinate Plane

1.7 Motion in the Coordinate Plane. Objectives: -Review algebraic concepts including the coordinate plane, origin, x- and y- coordinates, and ordered pair. -Construct translations, reflections across axes, and rotations about the origin of the coordinate plane. Warm-Up:

mikko
Download Presentation

1.7 Motion in the Coordinate Plane

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 1.7 Motion in the Coordinate Plane Objectives: -Review algebraic concepts including the coordinate plane, origin, x- and y- coordinates, and ordered pair. -Construct translations, reflections across axes, and rotations about the origin of the coordinate plane. Warm-Up: Graph the following points. A(2,5), B(-3,6), C(-4,-1), D(5,-7) Label the x- & y axes, origin, & quadrants 1,2,3,&4

  2. Example 1: Horizontal Translation of R units: H(x,y)=(x+h,y) Original A(-1,2) B(-1,-3) C(4,1) (x+2, y) (1,2) (1,-3) (6,1) Horizontal Translations move along the x-axis

  3. Example 2: Vertical Translation of V units: V(x,y)=(x,y+v) (x,y-3) (-1,-1) (-1,-6) (4,-2) Original A(-1,2) B(-1,-3) C(4,1) Vertical Translations move along the y-axis

  4. Example 3: Horizontal & Vertical Translation of units: (x,y)=(x+h,y+v) (x-4,y+5) (-5,7) (-5,2) (0,6) Original A(-1,2) B(-1,-3) C(4,1)

  5. Example 4: Reflections Across the x-axis: M(x,y)=(x,-y) Original A(1,2) B(5,1) C(6,4) (x,-y) (1,-2) (5,-1) (6,-4)

  6. Example 5: Reflections Across the y-axis: N(x,y)=(-x,y) Original A(1,2) B(5,1) C(6,4) (-x,y) (-1,2) (-5,1) (-6,4)

  7. Example 6: 180 degree rotation about the origin: R(x,y)=(-x,-y) Original A(2,5) B(4,1) C(6,7) (-x,-y) (-2,-5) (-4,-1) (-6,-7)

  8. Use the given rule to transform the figure. Label the coordinates of the preimage & image. (x,y)=(x+4,y) ∆ABC∆A1B1C1 A :______ A1 :______ B : ______ B1 : ______ C : ______ C1 : ______ Type of transformation: ____________________

  9. Use the given rule to transform the figure. Label the coordinates of the preimage & image. (x,y)=(x+6,y-2) ∆PQR∆P1Q1R1 P :______ P1 :______ Q : ______ Q1 : ______ R : ______ R1 : ______ Type of transformation: ____________________

  10. Use the given rule to transform the figure. Label the coordinates of the preimage & image. (x,y)=(x,-y) ∆LMN∆L1M1N1 L :______ L1 :______ M : ______ M1 : ______ N : ______ N1 : ______ Type of transformation: ____________________

  11. Use the given rule to transform the figure. Label the coordinates of the preimage & image. (x,y)=(-x, y) ∆LMN∆L1M1N1 L :______ L1 :______ M : ______ M1 : ______ N : ______ N1 : ______ Type of transformation: ____________________

  12. Use the given rule to transform the figure. Label the coordinates of the preimage & image. (x,y)=(-x,-y) ∆LMN∆L1M1N1 L :______ L1 :______ M : ______ M1 : ______ N : ______ N1 : ______ Type of transformation: ____________________

  13. Describe the result of applying each rule to a figure in the coordinate plane. F(x,y)=(x+7,y) Z(x,y)=(-x,y) A(x,y)=(x-6,y+3) T(x,y)=(x,-y) C(x,y)=(x,y-5) W(x,y)=(-x,-y)

  14. Write the rule in the form T(x,y)=(?,?) that describes the transformation pictured. (x,y)=( ___ , ___ ) ∆ABC∆A1B1C1 A :______ A1 :______ B : ______ B1 : ______ C : ______ C1 : ______ Type of transformation: ____________________

  15. Write the rule in the form T(x,y)=(?,?) that describes the transformation pictured. (x,y)=( ___ , ___ ) ∆PQR∆P1Q1R1 P :______ P1 :______ Q : ______ Q1 : ______ R : ______ R1 : ______ Type of transformation: ____________________

  16. Write the rule in the form T(x,y)=(?,?) that describes the transformation pictured. (x,y)=( ___ , ___ ) ∆LMN∆L1M1N1 L :______ L1:______ M : ______ M1: ______ N : ______ N1: ______ Type of transformation: ____________________

More Related