1 / 8

Daily Questions:

Daily Questions: One image of an equilatral triangle is rotated 90d clockwise and a second image is rotated 30d counterclockwise. Describe the relationship between the two images. Is a rotation always an isometry ?. Transformations - Dilations.

mikko
Download Presentation

Daily Questions:

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Daily Questions: • One image of an equilatral triangle is rotated 90d clockwise and a second image is rotated 30d counterclockwise. Describe the relationship between the two images. • Is a rotation always an isometry?

  2. Transformations - Dilations Obj: Student will identify a dilation and a scale factor for a polygon.

  3. Transformations are changes made to a triangle (or other polygon). • There are several types of transformation: • Translation – move to new location • Dilation – shrink or expand • Reflection – mirror across a point or line • Rotation – turn clockwise or counterclockwise

  4. Dilations are very hard to map algebraically, but are intuitively obvious. a’ a b b’ object c image c’

  5. Dilations where the image is larger are called enlargements and dilations where the image is smaller are called reductions. a’’ b’’ a c’’ object Image - reduction b a’ c b’ Image - enlargement c’

  6. A scale factor describes the change in the object: • Scale factor > 1  bigger image • Scale factor < 1  smaller image a’ a b’ b object Scale factor = 2.0 (image twice as big) c image c’

  7. Dilations can have a ‘center of dilation’ that is exactly in the center of the figure. a a’ b’ image b c’ object c

  8. Dilations can have the ‘center of dilation’ at a corner or even outside the figure. a a’ b image b’ In this figure, c is the center of dilation and c’ maps onto c. object c’ c

More Related