1 / 19

Polynomials

Polynomials. Higher Maths. Polynomials introduction. Polynomials 1. Factors. Curves cutting the x and the y axis. Quotient and remainder. Polynomials. Ans. Ans. Ans. Ans. Ans. Polynomial problems 1. Click on a topic. Past Paper questions. Polynomial exam level questions.

mildred
Download Presentation

Polynomials

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Polynomials Higher Maths

  2. Polynomials introduction Polynomials 1 Factors Curves cutting the x and the y axis Quotient and remainder Polynomials Ans Ans Ans Ans Ans Polynomial problems 1 Click on a topic Past Paper questions Polynomial exam level questions Factors of the form ax + b Polynomial problems 2

  3. Polynomials (Introduction) Use nested multiplication to find the values of the functions below: 1.   f(x) = x3 + 2x2 + 3x + 5 , find f(3) 2.   f(x) = 3x2 - 4x + 7 , find f(2) 3.   f(x) = 2x3 - x2 – x - 1 , find f(-2) 4.   f(x) = x4 + 2x3 – x2 + x + 1 , find f(3) 5.   f(x) = x3 - 2x2 - 3x - 7 , find f(1) 6.   f(x) = x4 - x3 + x2 + x + 2 , find f(4) 7.   f(x) = x4 - 2x2 - 2 , find f(-1) 8.   f(x) = 2x5 + x3 - 6x + 8 , find f(2) 9.   f(x) = 7x2 - 2x + 3 , find f(-1) 10.   f(x) = x3 - 10x2 - 8 , find f(-2) 11.   f(x) = 2x5 + 3x4 - x2 + 2x - 3 , find f(-1) 12.   f(x) = x6 + 2x4 -3x3 + 2x2 + 1 , find f(-3)

  4. Polynomials (1) Use nested multiplication to find the values of the functions below 1  f(x) = 2x3 - 3x2 + 5x + 1 , find f(4) 2    f(x) = x4 - x3 + 2x2 + x + 3 , find f(-2) 3  f(x) = 3x3 - 4x2 + 5 , find f(2) 4  f(x) = 2x4 + 3x3 -8x + 5 , find f(3) 5 f(x) = 2x5 + 3x3 + 4x2 - 7x - 1 , find f(1) 6  f(x) = x4 - 6x3 + 3x2 + 4x + 2 , find f(-2) 7  f(x) = 4x3 - 7x2 - x - 2 , find f(-1) 8 f(x) = 2x4 + 4x3 - 6x + 8 , find f(1/2) 9  f(x) = 8x2 - 2x + 3 , find f(-1/2) 10    f(x) = x3 - 10x2 + 5x - 8 , find f(-2) 11 f(x) = 2x5 + 3x4 - x2 - 2x + 3 , find f(-1) 12  f(x) = x6 + 2x4 -3x3 + 2x2 + 1 , find f(-3) Solutions on next slide

  5. Solutions 1  f(4) = 101  2 f(-2) = 33 3  f(2) = 13 4 f(3) = 224 5 f(1) = 1 6 f(-2) = 70 7 f(-1) = -12  8 f(1/2) = 5.625 9 f(-1/2) = 6 10 f(-2) = -66 11 f(-1) = 5  12 f(-3) = 991

  6. Factors 1 Show that x - 2 is a factor of x3 + x2 - 10x + 8 and hence factorise fully. 2 Show that x - 4 is a factor of x3 - 4x2 - 9x + 36 and hence factorise fully. 3 Show that x + 2 is a factor of x3 + 4x2 + x - 6 and hence factorise fully. 4 Show that x + 1 is a factor of x3 - 6x2 + 3x + 10 and hence factorise fully. 5 Show that x - 2 is a factor of 2x3 - 7x2 + 7x - 2 and hence factorise fully. 6 Show that x + 4 is a factor of 3x3 + 14x2 + 7x - 4 and hence factorise fully. 7 Show that x + 3 is a factor of x3 + 3x2 - 25x - 75 and hence factorise fully. 8 Show that x - 3 is a factor of 4x3 - 21x2 + 29x - 6 and hence factorise fully. 9 Show that x - 1 is a factor of 8x3 - 14x2 + 7x - 1 and hence factorise fully.

  7. Factors  - Some Solutions 1 (x - 2)(x - 1)(x + 4) 2 (x + 3)(x - 3)(x - 4) 3 (x - 1)(x + 3)(x + 2) 4 (x + 1)(x - 2)(x - 5) 5  (x - 2)(2x - 1)(x - 1)

  8. Curves cutting the x and y axes In each example, find the points where the curve cuts the x and y axes. 1.   y = x3 + x2 - 10x + 8 2.   y = x3 + 6x2 + 11x + 6    3.   y = x3 - 8x2 + 17x - 10    4.   y = x3 - x2 - 10x - 8    5.   y = x3 + 4x2 + x - 6    6.   y = x3 + x2 - 16x + 20    7.   y = 2x3 - 17x2 + 22x - 7    8.   y = 6x3 - 17x2 + 11x - 2    9.   y = 4x3 + 11x2 + 5x - 2    10.   y = 3x3 - 5x2 - 4x + 4    11.   y = x3 - 8x2 + 11x + 20    12.   y = 2x3 - x2 - 15x + 18    13.   y = x4 - 5x3 + 5x2 + 5x - 6    14.   y = 2x4 + 9x3 + 6x2 - 11x - 6 Solutions on next slide

  9. Curves cutting the x and y axes - Solutions 1.   (0, 8)   (-4, 0)    (2, 0)    (1, 0)    2.   (0, 6)   (-1, 0)    (-2, 0)    (-3, 0)    3.   (0, -10)   (1, 0)    (2, 0)    (5, 0)    4.   (0, -8)   (-2, 0)    (-1, 0)    (4, 0)    5.   (0, -6)   (1, 0)    (-2, 0)    (-3, 0)    6.   (0, 20)   (2, 0)    (2, 0)    (-5, 0) 7.   (0, -7)   (7, 0)    (½, 0)    (1, 0)  8.   (0, -2)   (2, 0)    (½, 0)    (1/3, 0)    9.   (0, -2)   (¼, 0)    (-1, 0)    (-2, 0)    10.   (0, 4)   (2/3, 0)    (-1, 0)    (2, 0)    11.   (0, 20)   (4, 0)    (5, 0)    (-1, 0)    12.   (0, 18)   (3/2, 0)    (2, 0)    (-3, 0)    13.   (0, -6)   (1,0)    (2, 0)    (3, 0)    (-1, 0)    14.   (0, -6)   (-½, 0)   (1, 0)    (-2, 0)    (-3, 0)

  10. Quotient and Remainder Find the quotient and the remainder in each example. 1 x2 – 5x + 2 ÷ (x – 3) 2 2x2 + x + 3 ÷ (x – 1) 3 x3 + x2 – 3x + 1 ÷ (x + 2) 4 x3 - 2x2 – x - 3 ÷ (x + 1) 5 x2 – x - 2 ÷ (x – 1) 6 2x2 - 3x - 4 ÷ (x + 3) 7 x3 - 4x2 – 4x + 16 ÷ (x - 4) 8 x2 – 6x - 7 ÷ (x – 7) 9 x2 + x + 5 ÷ (x – 2) 10 x3 + 2x2 – 4 ÷ (x - 1) 11 2x3 - 3x2 – 4x + 7 ÷ (x + 1) 12 x3 - 4x2 – 7x + 10 ÷ (x - 5) 13 x4 + x2 + 1 ÷ (x - 2) 14 x3 - x2 + x - 1 ÷ (x - 1)

  11. Division by ax + b Find the quotient and remainder in each of the following exercises.  1.   4x2 + 6x - 2 divided by 2x - 1    2.   4x3 - 2x2 + 6x - 1 divided by 2x - 1    3.   6x2 - 5x + 2 divided by 3x - 1    4.   9x2 - 6x - 10 divided by 3x + 1    5.   3x3 + 5x2 - 11x + 8 divided by 3x - 1    6.   2x3 + 7x2 - 5x + 4 divided by 2x + 1    7.   2x3 - x2 - 1 divided by 2x + 3    8.   5x3 + 21x2 + 9x - 1 divided by 5x + 1    9.   6x3 + x2 + 1 divided by 2x - 3 Solutions on next slide

  12. Division by ax + b Solutions      Quotient      Remainder 1.   2x + 4      2     2.    2x2 + 3      2    3.   2x - 1      1    4.  3x - 3      -7    5.    x2 + 2x - 3       5    6.   x2 + 3x - 4      8    7.    x2 - 2x + 3     -10    8.   x2 + 4x + 1       -2

  13. Polynomials Problems 1 • 1. Show that x-4 is a factor of 2x2 – 11x + 12 and hence factorize fully. • 2. Factorize fully x3 – 11x2 + 26x – 16 • 3. If x+3 is a factor of x3 + kx2 + 7x + 3 , find k and hence factorize fully. • Show that x=2 is a root of the equation x3 + 5x2 - 4x – 20 = 0 and • find the other roots. • Find the points where the curve y = x3 + 10x2 - 9x – 90 cuts • the coordinate axis. • 6. Factorize fully x3 + 2x2 - x – 2. • 7. If x-1 is a factor of x3 - 3x2 + kx – 1, find k and hence factorize fully. • 8. Show that x=1 is a root of the equation x3 - 9x2 + 20x–12 = 0 • and find the other roots. • 9. Show that x =-4 is a root of the equation 6x3 + 25x2 + 2x–8 = 0 • and find the other roots. • 10. If x-2 is a factor of f(x) = 2x3 + kx2 + 7x + 6 , find k and hence • solve the equation f(x) = 0 with this value of k. • 11. The same remainder is obtained when x2 + 3x – 2 and • x3 - 4x2 + 5x + p are divided by x+1. Find p.

  14. Polynomials problems 2 • Find k if x+3 is a factor of x3 – 3x2 + kx + 6 • Find p if x4 + 4x3 + px2 + 4x + 1 has x+1 as a factor. • Hence factorize fully. • If x+3 and x-1 are factors of f(x) = x4 + 2x3 - 7x2 + ax + b , find a and b • and hence factorize fully. • If x+2 is a factor of x3 + kx2 - x – 2 , find k • and hence factorize fully. • If x=3 is a root of the equation x3 – 37x + k = 0, find k • and hence find all the other roots. • Given that x-2 is a factor of f(x) = 2x3 + kx2 + 7x + 6, find k. • Hence solve the equation f(x) = 0 with this value of k. • Find k if 2x3 + x2 + kx – 8 is divisible by x+2. • 8. Find k if x3 + kx2 - 6x + 8 has a factor x-4. • Hence factorize the expression fully.

  15. Revision ‑ Exam level questions • 2x + 1 is a factor of 2x3 – tx2 + x + 2. Find t. • 2. If x + 1 and x ‑ 3 are factors of f(x) = 2x3 ‑ 5x2 + px + q, find p and q. • 3. Given that 2x ‑ 1 is a factor of 4x3‑ 4x2 + kx + 15 , find k. • Factorize fully when k has this value. • Find the points where the curve y = 4x3 – 4x2 - 29x + 15 cuts the x‑axis. • Factorize fully a) 2x3‑ 3x2 ‑ 11x + 6 b) 3x3 ‑ 2x2‑ 19x ‑ 6 • x3 + kx2‑ 13x ‑ 10 is divisible by x + 2. Find the value of k. • 2x3 ‑9x2 + ax + 30 is divisible by 2x ‑ 3. Find a. • x + 3 is a factor of 3x3+ 2x2 + nx + 6. Find n then factorize fully. • 9. x4 - 2x3 + kx2 + 3x ‑ 2 has x + 2 as a factor. Find the value of k.

  16. Factorize fully x3+ 6x2+ 9x + 4 and hence solve • x3+ 6x2+ 9x + 4 = 0.Find the stationary points on the • curve y = x3+ 6x2+ 9x + 4 and determine their nature. Sketch the curve. • 11. If x ‑ 1 and x + 3 are both factors of 2x3+ ax2 + bx + 3, find the values of a and b. • 12. Find k if x + 1 is a factor of x3 + kx2 ‑ 5x ‑ 6. Find the other factors when k has this value. • 13. Solve the equation x3‑ x2 + x ‑ 6 = 0. Hence find the equation of the tangent to the curve y = x3‑ x2 + x ‑ 6 at the points where it cuts the x‑axis. Find the equation of the tangent at the point where the curve crosses the y‑axis. Show that the two tangents meet at (3 /2, ‑9/2). • 14. If f(x) = 3x4 + 8x3 – 6x2 , solve the equation f '(x) = 24.

  17. Polynomials - (Questions from past papers) • Factorise fully 2x3 – 3x2 - 11x + 6 • Factorise fully x3 – 6x2 + 9x – 4 • Factorise fully 2x3 + 5x2 - 4x – 3 • Find ‘p’ if (x+3) is a factor of x3 – x2 + px + 15. • When f(x) = 2x4 – x3 + px2 + qx + 12 is divided by (x – 2) • the remainder is 114. One factor of f(x) is (x + 1). Find p and q • One root of 2x3 – 3x2 + px + 30 = 0 is x = - 3. • Find ‘p’ and hence find the other roots. • Show that (x – 3) is a factor of f(x) = 2x3 + 3x2 – 23x – 12 and • hence factorise f(x) fully. Continued on the next slide

  18. 8. Find a real root of the equation 2x3 – 3x2 + 2x – 8 = 0 • Show algebraically that there are no other real roots. • 9. Find ‘k’ if (x – 2) is a factor of x3 + kx2 – 4x – 12 • and hence factorise fully. • Express x3 - 4x2 – 7x + 10 in fully factorised form. • 11. Show that x = 2 is a root of the equation • 2x3 + x2 – 13x + 6 = 0 and hence find the other roots. • Given that (x + 2) is a factor of 2x3 + x2 + kx + 2, find the value of k. • Hence solve the equation 2x3 + x2 + kx + 2 = 0 when k takes this value. • 13. Given that (x – 2) and (x + 3) are factors • of f(x) = 3x3 + 2x2 + cx + d, find the values of ‘c’ and ‘d’. Solutions on next slide

  19. Answers to – Polynomials past paper questions Question Solution 1 (x – 3)(2x – 1)(x + 2) 2 (x – 1)(x – 1)(x - 4) 3 (x – 1)(2x + 1)(x + 3) 4 p = -7 5 4p + 2q = 78; p – q = -15 solve to give p=8 and q = 23 6 Roots are x=-3 , 2 and 5/2 7 (x – 3)(2x + 1)(x + 4) 8 (x-2)(2x2+x+4) = 0 So x = 2 is a root and there are no more roots because you cannot take the square root of a negative number which occurs when you apply the quadratic formula. 9 K = 3 ; So this gives f(x) = (x – 2)(x + 3)(x + 2) 10 (x – 1)(x –5)(x + 2) 11 Roots are x = 2 , x = ½ and x = -3 12 k = -5 ; x = -2 , ½ and 1 13 2c + d + 32 = 0, -3c + d -63 = 0 solve to give c = -19 and d = 6

More Related