580 likes | 768 Views
GLOBIOM Methodology and implementation. P. Havlík , M. Herrero , H. Valin , M. Obersteiner International Institute for Applied Systems Analysis (IIASA), Austria International Livestock Research Institute (ILRI), Kenya.
E N D
GLOBIOMMethodology and implementation P. Havlík, M. Herrero, H. Valin, M. Obersteiner International Institute for Applied Systems Analysis (IIASA), Austria International Livestock Research Institute (ILRI), Kenya • Agrimonde-Terra:Animal Productions. Food and feed future demand. CIRAD Paris, February 13, 2013
Outline • Model overview • Livestock sector modelling • Scenarios (SSPs) • Results • 5. Conclusions
GLOBIOM: Global Biosphere Management Model Partial equilibrium model: Agriculture, Forestry, Bioenergy DEMAND SUPPLY
GLOBIOM Spatial equilibrium model a la Takayama & Judge Maximization of the social welfare (PS + CS) Recursively dynamic (10 year periods) Supply functions implicit – based on spatially explicit Leontief production functions: production system 1 (grass based) productivity 1 + constant cost 1 production system 2 (mixed) productivity 2 + constant cost 2 Demand functions explicit: linearized non-linear functions
Supply Chains Wood products Sawn wood Pulp LAND USE CHANGE Natural Forests Wood Processing Bioenergy Bioethanol Biodiesel Methanol Heat Electricity Biogas Managed Forests Short Rotation Tree Plantations Bioenergy Processing Crops Corn Wheat Cassava Potatoes Rapeseed etc… Cropland Grassland Livestock Feeding Livestock products Beef Lamb Pork Poultry Eggs Milk Other natural land
Main exogenous drivers: Population GDP Technological change Bio-energy demand (POLES team) Diets (FAO, 2006) Output:Production Q - land use (change) - water use - GHG, - other environment (nutrient cycle, biodiversity,…) Consumption Q Prices Trade flows
Spatial resolution Homogeneous response units (HRU) – clusters of 5 arcmin pixels Source: Skalský et al. (2008)
Spatial resolution > 200 000 SimU Simulation Units (SimU) = HRU & PX30 & Country zone Source: Skalský et al. (2008)
Crops - EPIC Processes • Weather • Hydrology • Erosion • Carbon sequestration • Crop growth • Crop rotations • Fertilization • Tillage • Irrigation • Drainage • Pesticide • Grazing • Manure Major outputs: Crop yields, Environmental effects (e.g. soil carbon, nitrogen leaching) 20 crops (>75% of harvested area) 4 management systems: High input, Low input, Irrigated, Subsistence
Crops - EPIC Relative Difference in Means (2050/2100) in Wheat Yields [Data: Tyndall, Afi Scenario, simulation model: EPIC]
Grasslands – CENTURY/EPIC Source: EPIC model (t/ha DM)
Forests – G4M Downscaling FAO country level information and forest growth functions estimated from yield tables Source: Kindermann et al. (2008)
Livestock production systems distribution Sere and Steinfeld (1996) classification updated by Robinson et al. (2011)
Livestock sector coverage Livestock categories: Bovines: Dairy & Other Sheep & Goats: Dairy & Other Poultry: Laying hens, Broilers, Mixed Pigs Production systems: Ruminats Grass based: Arid, Humid, Temperate/Highlands Mixed crop-livestock: Arid, Humid, Temperate/Highlands Monogastrics Smallholders Industrial
Production systems parameterization Herrero, Havlíket al. forthcoming
Production systems parameters Herrero, Havlíket al. forthcoming
Feed intensity of milk production Herrero, Havlik et al (forthcoming)
Non-CO2 intensity of milk production Herrero, Havlik et al (forthcoming)
IAM & IAV (“IPCC”)scenarios matrix approach SSPs x RCPs https://secure.iiasa.ac.at/web-apps/ene/SspDb/dsd?Action=htmlpage&page=about
Shared Socioeconomic reference Pathways (SSPs). (O’Neil, 2012)
Projected feed conversion efficiencies [kg protein product / kg protein feed]
Losses and wastes development in the Oilseeds&Pulses sector [%]
Consumption per capita – Monogastric meat – World [kg/cap/y]
Additional irrigation water consumption compared to 2000 [%]