1 / 38

XAX Can DM and DBD detectors combined?

XAX Can DM and DBD detectors combined?. Katsushi Arisaka. University of California, Los Angeles Department of Physics and Astronomy arisaka@physics.ucla.edu. XAX paper by UCLA Group. XAX (Xenon-Argon-Xenon). Water Tank Veto. WIMP (Spin even) Double Beta Decay. WIMP (Spin odd)

milos
Download Presentation

XAX Can DM and DBD detectors combined?

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. XAXCan DM and DBD detectors combined? Katsushi Arisaka University of California, Los Angeles Department of Physics and Astronomy arisaka@physics.ucla.edu Katsushi Arisaka

  2. XAX paper by UCLA Group Katsushi Arisaka, UCLA

  3. XAX (Xenon-Argon-Xenon) Water Tank Veto WIMP (Spin even) Double Beta Decay WIMP (Spin odd) Solar Neutrino WIMP (Spin even) 12 m 40Ar 70 ton (50 ton) 136Xe 7 ton (4 ton) 129/131Xe 12 ton (6 ton) 1.2 m 2 m 4 m 12 m 14 m Katsushi Arisaka, UCLA

  4. Separation of Odd and Even SpinXenon Katsushi Arisaka

  5. Why Multiple Targets? • Systematic Study of Dark Matter Interaction • Target mass dependence of Cross section and Energy spectrum • Xenonvs. Argon • Spin dependence of Cross section • 129/131Xe (Spin odd) vs.132/134/136Xe (Spin even) • Precise determination of Mass and Cross section • Neutrino-less Double Beta Decay •  > 1028 years by 136Xe • Solar Neutrino • 1% measurement of the pp chain flux by 129/131Xe. • Supernova Neutrino • Measurement of the total energy and temperature by coherent elastic scattering. • Xenonvs. Argon Katsushi Arisaka, UCLA

  6. Energy Spectrums (Natural Xe) 100 GeV WIMP (10-44 cm2) 2 DBD (1022 yrs) pp Solar Be7 Solar 0 DBD (1027 yrs) B8 Solar Katsushi Arisaka, UCLA

  7. Concept of one of XAX Detectors Liquid Xe (19 ton) TPB + Resistive Coating (ATO) + Acrylic Vessel Radiation- free Photon Detector (3” QUPID, Total 3950) 2 m OFHC (Oxygen-Free High Conductivity Copper) Vacuum Vessel Katsushi Arisaka, UCLA

  8. Concept of Double Layer XAX Acrylic Sheet + ITO + TPB Coating 0 V -10 kV Gas Xe -17.5 kV TPB +ATO + Acrylic Vessel + ITO Coating 129/131Xe 12 ton TPB + Acrylic Sheet + ATO Coating 2 m -10 kV 136Xe 7 ton Radiation-free Photon Detectors (QUPID) TPB + ITO Acrylic Sheet + ITO Coating -200 kV -10 kV 2 m Katsushi Arisaka, UCLA

  9. Equipotential lines and Electron Trajectories 0 V ITO (Indium Tin Oxide) Transparent Conductive Coating (~1 k⁄☐) -6 kV -13.5 kV ATO (Antimony Tin Oxide) Transparent Resistive Coating (~ 1 G⁄☐) Electron Trajectories ITO (Indium Tin Oxide) Transparent Conductive Coating (~1 k⁄☐) -200 kV -6kV 0 V Katsushi Arisaka, UCLA

  10. Expected No. of Photoelectrons per keV(Abs. Length = 10 m, Scat. Length = 50 cm) Photon Detectors on Side Wall PTFE on Side Wall (Reflectivity = 98%) ~ 1.5 pe/keV ~ 3 pe/keV Katsushi Arisaka, UCLA

  11. Expected No. of Photoelectrons per keV(Center of 2m Xenon Detector) Katsushi Arisaka, UCLA

  12. (1) Dark Matter Katsushi Arisaka, UCLA

  13. Gamma Backgrounds after S2/S1 cut (1 mBq / QUPID, 2m Xenon Detector)  BG (0 cm shield) 100 GeV WIMP (10-44 cm2)  BG (5 cm shield) 2 DBD (1022 yrs) 1 TeV  BG (10 cm shield) pp Solar Neutrino 10 TeV Be7 Solar Neutrino Katsushi Arisaka, UCLA

  14. Expected Background from Gammas (1 mBq / QUPID, 1 year, Multi Hit Cut, No S2/S1 cut) Xenon (2m) 0.01  /10ton-year after S2/S1 cut < 10–8 DRU 10 ton Katsushi Arisaka, UCLA

  15. Neutron Backgrounds after Multi-hit Cut(1 n/year/QUPID, 2m Xenon Detector) 100 GeV WIMP (10-44 cm2) 1 TeV 10 TeV 0 cm 10 cm 20 cm 30 cm Katsushi Arisaka, UCLA

  16. Expected Background from Neutrons (1 n/year/QUPID, 10 year, Multi Hit Cut) Xenon (2m) 0.4 n /10ton-year < 10–8 DRU 10 ton Katsushi Arisaka, UCLA

  17. Expected No. of WIMP Signals and Backgrounds(10 ton-year of Liquid Xenon, Window = 3 – 15 keVee) No. of Background Events No. of WIMP Signals 10-44 cm2 1 mBq /QUPID Gamma (no cut) 10-45 cm2 G1 Gamma (S2/S1 cut) 10-46 cm2 G2 Neutron (no cut) 10-47 cm2 pp-chain Solar (S2/S1 cut) G3 Neutron (multi-hit cut) 10-48 cm2 2-Neutrino DBD (S2/S1 cut) 19.2 ton 14.0 ton 9.8 ton Self Shielding Cut (cm from wall) WIMP Mass (GeV) Katsushi Arisaka, UCLA

  18. Summary of WIMP Detection • Sensitivity: • < 10-47 cm2 at 100 GeV WIMP mass. (< 10-46 cm2 at 1 TeV) • Background: • Completely free from external gamma ray backgrounds. • < 10 mBq / PMT • QUPID is < 1 mBq (Goal is < 0.1 mBq) • 10 cm active shielding • S2/S1 cut • Neutrons background is negligible too. • < 1 neutron / year / PMT required. • QUPID goal is < 0.1 n/year (Current R8778 is < 5 n/year) • Irreducible background comes from pp-chain solar neutrino. • ~10-7 /kg/keV/day  ~0.5 event /ton/year (in 3-15 keVee window) • Assuming 99% rejection by S2/S1 cut. • Still investigating other backgrounds • Internal Krypton and Radon in Xenon • Photon Detection: • Complete surface coverage by QUPID ensures > 3 pe/keV. Katsushi Arisaka, UCLA

  19. (2) Neutrino-less Double Beta Decay Katsushi Arisaka, UCLA

  20. Sensitivity of Neutrinoless Double Beta Decay to Neutrino Mass Normal Scheme Inverted Scheme DBD Life Time 1026 yr 1027 yr 1028 yr Cosmology Cosmology (Figure from C. Giunti) Laurent SIMARD, LAL - Orsay Katsushi Arisaka, UCLA

  21. Energy Resolution of XENON 10 Xe-129 236 keV Xe-131 164 keV Xe-129 236 keV Xe-131 164 keV • = 0.9% at 2.5 MeV • FWHM = 50 keV expected Katsushi Arisaka

  22. 136Xe Double Beta Decay and Gamma Background (1 mBq / QUPID, 2m Xenon Detector) 0 cm 2 DBD (1022 yrs) 10 cm  BG ~ 10-7dru FWHM = 50 keV  5*10-4 /FWHM*kg*year 20 cm 30 cm 40 cm 50 cm 0 DBD (1027 yrs) B8 Solar Katsushi Arisaka, UCLA

  23. Expected Background from Gammas (1 mBq / QUPID, 1 year, Multi Hit Cut) 6  /year < 10–8 DRU 4.1 ton Katsushi Arisaka, UCLA

  24. Expected No. of DBD Signals and Backgrounds(10 ton-year of Liquid Xenon, Window = 2479 ± 25 keV) No. of Background Events No. of 0-Neutrino DBD Signals 1 mBq/Qupid 0.1 mBq/Qupid 19.2 ton 14.0 ton 9.8 ton 6.6 ton 4.1 ton Self Shielding Cut (cm from wall) Life Time (Year) Katsushi Arisaka, UCLA

  25. Expected No. of DBD Signals and Backgrounds(1 ton-year of Liquid Xenon, Window = 2479 ± 25 keV) No. of Background Events No. of 0-Neutrino DBD Signals 1 mBq/Qupid 0.1 mBq/Qupid 2.4 ton 1.2 ton 0.5 ton 0.2 ton Self Shielding Cut (cm from wall) Life Time (Year) Katsushi Arisaka, UCLA

  26. Double Beta Decay Sensitivities XAX (1 mBq) 136Xe 4000 50 0.0005 ~1027 15 – 95 XAX (0.1mBq) 136Xe 4000 50 0.00005 ~1028 10 – 60 Katsushi Arisaka, UCLA

  27. Double Beta Decay Experiments EXO200 EXO 1Ton CANDLES III No. of Backgrounds (/year) 1026 yrs 1025 yrs 1027 yrs 1028 yrs CUORE I NEMO3 (Mo) CUORE III XENON1T Cuoricino XAX (Natural) Super-NEMO (Se) GERDA III XAX (Enriched) GERDA I CUORE II EXO 1Ton (Ba tag) COBRA GERDA II NEMO3 (Se) Mass (kg) Katsushi Arisaka, UCLA

  28. Summary of DBD Detection • All the gamma ray background can be effectively removed. • Low-radioactive QUPID is essential. • < 1 mBq for  > 1027 years • < 0.1 mBq for  > 1028 years • Extensive active shielding. • 40 cm cut required (4 ton fiducial volume out of 19 ton.) • Multiple hit cut. • Ba2+ tagging is not necessary, unlike EXO. • The tail from two neutrino double beta decays is negligible. • based on XENON10, the energy resolution of the double-phase Xenon should be superior to EXO. •  = 1.0% at 2.5 MeV (FWHM = 50 keV) • > 3 pe/keV is required Katsushi Arisaka

  29. From MAX to XAX Katsushi Arisaka, UCLA

  30. MAX Detector 40Ar 5 ton (2.5 ton) Xe 2.4 ton (1.2 ton) 2 m 1 m DUSEL S4 Study funded by NSF ($3.5M) Katsushi Arisaka, UCLA

  31. MAX G2 WIMP WIMP Double Beta Decay 40Ar 10 ton (5 ton) Xe 2.4 ton (1.2 ton) 1 m 2 m Katsushi Arisaka, UCLA

  32. XAX Phase I G3 WIMP WIMP Double Beta Decay Solar Neutrino 40Ar 70 ton (50 ton) Xe 20 ton (10 ton) 129/131Xe 2.4 ton (1.2 ton) 4 m 2 m Katsushi Arisaka, UCLA

  33. XAX Phase II G4 WIMP WIMP (Spin even) Double Beta Decay WIMP (Spin odd) Solar Neutrino 40Ar 70 ton (50 ton) 136Xe 7 ton (4 ton) 129/131Xe 12 ton (6 ton) 1.2 m 2 m 4 m Katsushi Arisaka, UCLA

  34. MAX and XAX G2 G3 G4 Katsushi Arisaka, UCLA

  35. MAX and XAX G2 G3 G4 Katsushi Arisaka, UCLA

  36. MAX and XAX G2 G3 G4 Katsushi Arisaka, UCLA

  37. Summary Katsushi Arisaka, UCLA

  38. Summary on XAX • XAX incorporates several innovative concepts: • The largest detector (> 10 ton) compatible with Argon and Xenon • Background free • Radiation-free photon detector:QUPID • Thick (20 cm) self shielding • Multi-hit cut and S2/S1 cut by double phase TPC • Pulse shape discrimination (for Ar) with “reconstructed” S1 signal • Best photon collection • 4π coverage of photon detectors (like single phase detectors) • XAX can achieve four important scientific goals: • Systematic study of WIMP properties • Sensitivity below 10-47 cm2 at 100 GeV (< 10-46 cm2 at 1 TeV) • Determination of Mass and Cross section • Target mass (A) dependence of Cross section (Argon vs. Xenon) • Spin dependence (129/131Xe vs. 132/134/136Xe) • Neutrino-less Double Beta Decay (by 136Xe) • Sensitivity up to 1028 years • pp-chain Solar Neutrino (by 129/131Xe) • Flux with 1% statistical error • Supernova Neutrino by elastic scattering • Total Energy with 8% statistical error • Temperature with 5% statistical error Katsushi Arisaka, UCLA

More Related