1 / 10

m  DEG = 115°, and m  DEF = 48°. Find m  FEG

–48° –48°. Example 3: Using the Angle Addition Postulate. m  DEG = 115°, and m  DEF = 48°. Find m  FEG. m  DEG = m  DEF + m  FEG.  Add. Post. 115  = 48  + m  FEG. Substitute the given values. Subtract 48 from both sides. 67  = m  FEG. Simplify. Check It Out! Example 3.

mimir
Download Presentation

m  DEG = 115°, and m  DEF = 48°. Find m  FEG

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. –48°–48° Example 3: Using the Angle Addition Postulate mDEG = 115°, and mDEF = 48°. Find mFEG mDEG = mDEF + mFEG  Add. Post. 115= 48+ mFEG Substitute the given values. Subtract 48 from both sides. 67= mFEG Simplify.

  2. Check It Out! Example 3 mXWZ = 121° and mXWY = 59°. Find mYWZ. mYWZ = mXWZ – mXWY  Add. Post. mYWZ= 121– 59 Substitute the given values. mYWZ= 62 Subtract.

  3. An angle bisector is a ray that divides an angle into two congruent angles. JK bisects LJM; thus LJKKJM.

  4. KM bisects JKL, mJKM = (4x + 6)°, and mMKL = (7x – 12)°. Find mJKM. Example 4: Finding the Measure of an Angle

  5. +12 +12 –4x –4x Example 4 Continued Step 1 Find x. mJKM = mMKL Def. of  bisector (4x + 6)° = (7x – 12)° Substitute the given values. Add 12 to both sides. 4x + 18 = 7x Simplify. Subtract 4x from both sides. 18 = 3x Divide both sides by 3. 6 = x Simplify.

  6. Example 4 Continued Step 2 FindmJKM. mJKM = 4x + 6 = 4(6) + 6 Substitute 6 for x. = 30 Simplify.

  7. QS bisects PQR, mPQS = (5y – 1)°, and mPQR = (8y + 12)°. Find mPQS. Check It Out! Example 4a Find the measure of each angle. Step 1 Find y. Def. of  bisector Substitute the given values. 5y – 1 = 4y + 6 Simplify. y – 1 = 6 Subtract 4y from both sides. y = 7 Add 1 to both sides.

  8. Check It Out! Example 4a Continued Step 2 FindmPQS. mPQS = 5y – 1 = 5(7) – 1 Substitute 7 for y. = 34 Simplify.

  9. JK bisects LJM, mLJK = (-10x + 3)°, and mKJM = (–x + 21)°. Find mLJM. +x +x –3 –3 Check It Out! Example 4b Find the measure of each angle. Step 1 Find x. LJK = KJM Def. of  bisector (–10x + 3)° = (–x + 21)° Substitute the given values. Add x to both sides. Simplify. –9x + 3 = 21 Subtract 3 from both sides. –9x = 18 Divide both sides by –9. x = –2 Simplify.

  10. Check It Out! Example 4b Continued Step 2 FindmLJM. mLJM = mLJK + mKJM = (–10x + 3)° + (–x + 21)° = –10(–2) + 3 – (–2) + 21 Substitute –2 for x. = 20 + 3 + 2 + 21 Simplify. = 46°

More Related