1 / 64

Web Data Management

Web Data Management. XML and its Syntax. Why XML is of Interest to Us. XML is just syntax for data Note: we have no syntax for relational data But XML is not relational: semistructured This is exciting because: Can translate any legacy data to XML Can ship XML over the Web (HTTP)

mimir
Download Presentation

Web Data Management

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Web Data Management XML and its Syntax

  2. Why XML is of Interest to Us • XML is just syntax for data • Note: we have no syntax for relational data • But XML is not relational: semistructured • This is exciting because: • Can translate anylegacy data to XML • Can ship XML over the Web (HTTP) • Can input XML into any application • Thus: data sharing and exchange on the Web

  3. XML Data Sharing and Exchange application application object-relational Integrate XML Data WEB (HTTP) Transform Warehouse application relational data legacy data Specific data management tasks

  4. From HTML to XML HTML describes the presentation

  5. HTML <h1> Bibliography </h1> <p> <i> Foundations of Databases </i> Abiteboul, Hull, Vianu <br> Addison Wesley, 1995 <p> <i> Data on the Web </i> Abiteoul, Buneman, Suciu <br> Morgan Kaufmann, 1999

  6. XML <bibliography> <book> <title> Foundations… </title> <author> Abiteboul </author> <author> Hull </author> <author> Vianu </author> <publisher> Addison Wesley </publisher> <year> 1995 </year> </book> … </bibliography> XML describes the content

  7. Relevance of XML • Databases are basically metadata about actual data contained in other tables • Actually describing & understanding the data poses a problem • XML binds a piece of data to what it is supposed to accomplish • Information is human & machine readable • XML is easier to understand & implement

  8. Relevance of XML • An example describing directions from one location to another <?xml version="1.0"?> <map> <start> <addr1>100 West Morgan St</addr1> <city>Raleigh</city> <state>NC</state> <zip>27603</zip> </start> <directions> <left distance="0.11 miles">W MORGAN ST</left> <left distance="0.11 miles">S WILMINGTON ST</left> <left distance="0.44 miles">E EDENTON ST</left> <right distance="0.09 miles">N WEST ST</right> <left distance="0.02 miles">W JONES ST</left> </directions> <destination> <addr1>508 W Jones St</addr1> <city>Raleigh</city> <state>NC</state> <zip>27603</zip> </destination> </map>

  9. Working with Objects • Object-Oriented approach allows greater flexibility • XML has object like implementations and uses • ‘Schema for Object-Oriented XML’ (SOX) • SOX enforces a valid Uniform Resource Identifier (URI); must include the file:// portion in the <schema> element

  10. Working with Objects <?xml version = "1.0" encoding = "UTF-8"?> <!DOCTYPE schema SYSTEM "urn:x-commerceone:document:com:commerceone:xdk:xml:schema.dtd$1.0"> <schema uri = "file:///S:/home_computer.sox" soxlang-version = "V0.2.2"> <elementtype name = "home_computer"> <model> <sequence> <element type = "monitor"/> <element type = "housing"/> <element type = "speakers"/> <element type = "keyboard"/> <element type = "mouse"/> </sequence> </model> </elementtype> <elementtype name = "monitor"> <model> <string/> </model> </elementtype>

  11. Working with Objects <?xml version = "1.0" encoding = "UTF-8"?> <!DOCTYPE schema SYSTEM "urn:x-commerceone:document:com:commerceone:xdk:xml:schema.dtd$1.0"> <schema uri = "file:///S:/home_computer.sox" soxlang-version = "V0.2.2"> <join system = "file:///S:/home_computer.sox"/> <elementtype name = "work_computer"> <extends type = "home_computer"> <append> <sequence> <element type = "scanner"/> <element type = "zip_drive"/> <element type = "printer"/> </sequence> </append> </extends> </elementtype> <elementtype name = "scanner"> <model> <string/> </model> </elementtype> <elementtype name = "zip_drive"> <model> <string/> </model> </elementtype> <elementtype name = "printer"> <model> <string/> </model> </elementtype> </schema>

  12. Working with Objects home_computer.sox schema work_computer.sox schema

  13. Working with Objects • SOX-compliant parsers pull in the required parent schemas <?xml version = "1.0" encoding = "UTF-8"?> <?soxtype file:///S:/work_computer.sox?> <work_computer> <monitor>15 inch</monitor> <housing> <cpu>1 GHz</cpu> <ram>256 MB</ram> <disk_space>60 GB</disk_space> <modem>56k</modem> </housing> <speakers>JBL</speakers> <keyboard>Microsoft</keyboard> <mouse>Microsoft</mouse> <scanner>Microtek</scanner> <zip_drive>100 MB</zip_drive> <printer>HP</printer> </work_computer>

  14. Application Messaging • XML & SOAP enabled ‘application messaging’ • XML used to describe the API to a Web Service • Software applications should be able to communicate in a near automated fashion • XML describes the Web Services themselves • Applications can query other applications to judge capability before making a request

  15. Application Messaging • NFQuery.dtd <?xml version='1.0' encoding='UTF-8' ?> <!ELEMENT query (news)> <!ELEMENT news EMPTY> <!ATTLIST news date CDATA #REQUIRED type (global | local | financial | sports | travel | weather ) #REQUIRED what (count | headers | all ) #REQUIRED limit CDATA #IMPLIED > • Joe_query.xml <?xml version = "1.0" encoding = "UTF-8"?> <!DOCTYPE query SYSTEM "NFQuery.dtd"> <query> <news date = "2001-10-10" type = "sports" what = "count"/> </query>

  16. Application Messaging • NFResponse.dtd <?xml version='1.0' encoding='UTF-8' ?> <!ELEMENT results (count | headers | all)> <!ATTLIST results date CDATA #REQUIRED type (global | local | financial | sports | travel | weather ) #REQUIRED > <!ELEMENT count (#PCDATA)> <!ELEMENT headers (#PCDATA)> <!ELEMENT all (headline+)> <!ELEMENT headline (#PCDATA)> • Joe_query_response.xml <?xml version = "1.0" encoding = "UTF-8"?> <!DOCTYPE results SYSTEM "NFResponse.dtd"> <results date = "2001-10-10" type = "sports"> <count>53</count> </results>

  17. Application Messaging • Joe_get_query.xml <?xml version = "1.0" encoding = "UTF-8"?> <!DOCTYPE query SYSTEM "NFQuery.dtd"> <query> <news date="2001-10-10" type="sports" what="all" limit="10"/> </query>

  18. Process Modeling • XML used to model process & workflow <map> <start> <addr1>100 West Morgan St</addr1> <city>Raleigh</city> <state>NC</state> <zip>27603</zip> </start> <directions> <left distance="0.11 miles">W MORGAN ST</left> <left distance="0.11 miles">S WILMINGTON ST</left> <left distance="0.44 miles">E EDENTON ST</left> <right distance="0.09 miles">N WEST ST</right> <left distance="0.02 miles">W JONES ST</left> </directions> <destination> <addr1>508 W Jones St</addr1> <city>Raleigh</city> <state>NC</state> <zip>27603</zip> </destination> </map>

  19. The .NET Framework • Shift from individual Web sites or devices to an integrated cluster of devices & services • People will control what, when, and how information is delivered to them • HTML based presentation is augmented by XML-based information • XML-based .NET programming model forges the idea of XML-based Web Services • Web services use protocols like HTTP & XML

  20. XML within .NET • XML obvious choice to represent commands and typed data • XML standard metalanguage for describing data • SOAP is an industry standard for using XML • Service Contract Language (SCL); XML grammar for documenting Web Service contracts • Businesses can create a variety of value-added applications by combining Web Services

  21. Required Knowledge • XML is simply metadata used to describe a markup language • Knowledge of XPath or SOAP is helpful • You may use a text editor or some IDE • You can even write your own parser for validating instance documents • Refer to help resources on the web: • http://www.w3.org • http://www.ietf.org • http://www.oasis-open.org

  22. Goals of XML • The goals behind creating the XML language: • should be compatible with SGML • should support a variety of applications • should be easily usable over the internet • xml design should be prepared quickly • design of XML shall be formal and concise • xml documents should be reasonably clear • xml documents should be uncomplicated to create • programs processing XML documents easy to write • terseness in XML markup is of minimal importance • optional features should be kept to a bare minimum

  23. The XML Language • Elements: represent tags or language that you create with XML <!ELEMENT nametype> • A customer data model..

  24. The XML Language • We first define our customer element <!ELEMENT customer (name , contact)> • You can impose some rules on this, such as having name OR contact • Defining <name> and <contact> is similar as they are parents of child elements: • <!ELEMENT name (first , middle , last)> • <!ELEMENT contact (address , phone)> • <!ELEMENT address (street , city , state , zip)> • <!ELEMENT phone (home , work , mobile)>

  25. XML Terminology • tags: book, title, author, … • start tag: <book>, end tag: </book> • elements: <book>…<book>,<author>…</author> • elements are nested • empty element: <red></red> abbrv. <red/> • an XML document: single root element

  26. XML Syntax • Another example: < db > < book > < title > Complete Guide to DB2 </ title > < author > Chamberlin </ author > </ book > < book > < title > Transaction Processing </ title > < author > Bernstein </ author > < author > Newcomer </ author > </ book > < publisher > < name > Morgan Kaufman </ name > < state > CA </ state > </ publisher > </ db >

  27. The XML Tree db book book publisher title author author name state title author “Complete Guide to DB2” “Morgan Kaufman” “CA” “Chamberlin” “Transaction Processing” “Bernstein” “Newcomer” Tags on nodes Data values on leaves

  28. XML Components • An XML file normally consists of three types of markup, the first two of which are optional: 1.An XML processing instruction(PI) identifying the version of XML being used, the way in which it is encoded, and whether it references other files or not, e,g, <?xml version="1.0" encoding="UCS2" standalone="yes">

  29. XML Components 2.A document type declaration(DTD) • either contains the formal markup declarations in its internal subset (between square brackets) or • references a file containing the relevant markup declarations (the external subset), e.g.: <!DOCTYPE memo SYSTEM "http://www.myco.com/dtds/memo.dtd">

  30. XML Components 3.A fully-tagged document instancewhich • consists of a root element, whose • element type name must match that assigned as the document type name in the document type declaration, within which all other markup is nested.

  31. XML Characteristics • Validity • If all three components are present, and • the document instance conforms to the rules defined in the document type definition • Well-formed • if each element is properly nested within its parent elements, • if it has matching tags • if each attribute is specified as an attribute name followed by a value indicator (=) and a quoted string.

  32. XML Components • Six kinds of markup that can occur in an XML document: elements, entityreferences, comments, processinginstructions, marked sections, anddocument type declarations. • Document Type Declarations • An XML document primarily consists of a strictly nested hierarchy of elements with a single root. • Elements can contain character data, child elements, or a mixture of both. In addition, they can have attributes.

  33. XML Components • Child character data and child elements are strictly ordered; attributes are not. For example: • <?xml version="1.0" ?> • <Book Author="Anonymous"> • <Title>Sample Book</Title> • <Chapter id="1"> • This is chapter 1. It is not very long or interesting. • </Chapter> • <Chapter id="2"> • This is chapter 2. Although it is longer than chapter 1, • it is not any more interesting. • </Chapter> • <comments/> • </Book>

  34. “Types” (or “Schemas”) for XML • Document Type Definition – DTD • Define a grammar for the XML document • we use it as substitute for types/schemas • Will be replaced by XML-Schema

  35. Document Type Definition (DTD) • The Document Type Definition(DTD) is either • contained in a <!DOCTYPE> tag, contained in an external file and referenced from a <!DOCTYPE> tag, or both. • PCDATA means Parsed Character Data (a mouthful for string) <!DOCTYPE Book [ <!ELEMENT Book (Title, Chapter+,comments?)> <!ATTLIST Book Author CDATA #REQUIRED> <!ELEMENT Title (#PCDATA)> <!ELEMENT Chapter (#PCDATA)> <!ATTLIST Chapter id ID #REQUIRED> <!ELEMENT comments EMPTY> ]>

  36. An Example DTD <!DOCTYPE db [ <!ELEMENT db ((book|publisher)*)> <!ELEMENT book (title,author*,year?)> <!ELEMENT title (#PCDATA)> <!ELEMENT author (#PCDATA)> <!ELEMENT year (#PCDATA)> <!ELEMENT publisher (#PCDATA)> ]> • PCDATA means Parsed Character Data(a mouthful for string)

  37. DTDs as Grammars db ::= (book|publisher)* book ::= (title,author*,year?) title ::= string author ::= string year ::= string publisher ::= string • A DTD is a EBNF (Extended BNF) grammar • An XML tree is precisely a derivation tree XML Documents that have a DTD and conform to it are called valid

  38. DTD Vs XML Schema • DTD: old style typing, still very used • XML schema: more modern, used e.g. in Web services • DTD: <!ELEMENT note (to, from, heading, body)> <!ELEMENT to (#PCDATA)> <!ELEMENT from (#PCDATA)> <!ELEMENT heading (#PCDATA)> <!ELEMENT body (#PCDATA)>

  39. DTD Vs XML Schema • The same structure in XML schema (an XML dialect) <?xml version="1.0"?> <xs:schemaxmlns:xs="http://www.w3.org/2001/XMLSchema"> <xs:element name="note"> <xs:complexType> <xs:sequence> <xs:element name="to" type="xs:string“ minOccurs=’1’ maxOccurs=’1’/> <xs:element name="from" type="xs:string"/> <xs:element name="heading" type="xs:string"/> <xs:element name="body" type="xs:string"/> </xs:sequence> </xs:complexType> </xs:element> </xs:schema>

  40. Elements 1) An element is defined as a group of one or more subelements/subgroups, character data, EMPTY, or ANY. For example: • Group: • <!ELEMENT A (B, C)> • Character data: • <!ELEMENT A (#PCDATA)> • Empty: • <!ELEMENT A EMPTY> • Any: • <!ELEMENT A ANY>>

  41. Elements 2) Elements defined as groups of subelements/ subgroups constitute non-terminals in the language. Elements defined as character data, EMPTY, or ANY constitute terminals. For example: • It is legal to define a language containing non-terminals that never resolve to terminals, such as one with purely circular definitions • It is generally impossible and/or useless to create any valid documents for such languages. • <!-- Element A is a non-terminal. --> • <!ELEMENT A (B)> • <!-- Element B is a terminal. --> • <!ELEMENT B (#PCDATA)>

  42. Elements 3) Groups can be either a sequence or choice of subelements and/or subgroups. For example: • Sequence: • <!-- Element A consists of a single element B. --> • <!ELEMENT A (B)> • <!-- Element A consists of element B followed by element C. --> • <!ELEMENT A (B, C)> • <!-- Element A consists of a sequence, including a choice subgroup. --> • <!ELEMENT A (B, (C | D), E)> • Choice: • <!-- Element A consists of either element B or element C. --> • <!ELEMENT A (B | C)> • <!-- Element A consists of a choice, including a sequence subgroup. --> • <!ELEMENT A (B | C | (D, E))>

  43. Elements 4) Optional (?), one-or-more (+), and zero-or-more (*) operators can be applied to groups, subgroups, and subelements. For example: • Optional: • <!-- Subelement B is optional. --> • <!ELEMENT A (B?, C)> • One or more: • <!-- Subgroup (C | D) occurs one or more times. --> • <!ELEMENT A (B, (C | D)+, E)> • Zero or more: • <!-- Group (B, C) occurs zero or more times, i.e. A can be empty. --> • <!ELEMENT A (B, C)*>

  44. Elements 5) Elements containing character data can be declared as containing only character data: • The latter case is an example of “mixed content” • "PCDATA" in the declarations is short for "Parsed Character DATA". • <!ELEMENT A (#PCDATA)> • or as containing a mixture of character data and elements: • <!ELEMENT A (#PCDATA | B | C)*>

  45. Elements 6) EMPTY means that the element has no child elements or character data. 7) ANY means that the element can contain zero or more child elements of any declared type, as well as character data. • It is therefore a shorthand for mixed content containing all declared elements.

  46. Attributes 1) Elements can have zero or more attributes. For example: • Attributes are name-value pairs that occur inside tags after the element name. • In XML, all attribute values must be quoted. • Attributes are alternative ways to represent data • <!ELEMENT A (#PCDATA)> • <!-- Declare an attribute a for element A --> • <!ATTLIST A a CDATA #IMPLIED> <div class="preface">

  47. Attributes <bookprice = “55” currency = “USD”> <title> Complete Guide to DB2 </title> <author> Chamberlin </author> <year> 1998 </year> </book> price, currency are called attributes

  48. Replacing Attributes with Elements <book> <title> Complete Guide to DB2 </title> <author> Chamberlin </author> <year> 1998 </year> <price> 55 </price> <currency> USD </currency> </book> attributes are alternative ways to represent data

  49. Attributes 2) A single ATTLIST statement can declare multiple attributes for the same element. Multiple ATTLIST statements can declare attributes for the same element. That is, the following are equivalent: • Single ATTLIST statement declaring multiple attributes for an element: • <!-- Element A has attributes a and b --> • <!ATTLIST A • a CDATA #IMPLIED • b CDATA #IMPLIED> • Multiple ATTLIST statements declaring attributes for the same element: • <!-- Element A has attributes a and b --> • <!ATTLIST A a CDATA #IMPLIED> • <!ATTLIST A b CDATA #IMPLIED>

  50. Attributes 3) Attributes can be optional, required, or have a fixed value. Optional attributes can have a default; fixed attributes must have a default. For example: • Optional without a default: • <!-- Element A has an attribute a. #IMPLIED = "optional, no default" --> • <!ATTLIST A a CDATA #IMPLIED> • Optional with a default: • <!-- If attribute a is not provided, a default of "aaa" will be used. --> • <!ATTLIST A a CDATA "aaa"> • Required: • <!ATTLIST A a CDATA #REQUIRED> • Fixed: • <!-- The value of attribute a is always "aaa" --> • <!ATTLIST A a CDATA #FIXED "aaa">

More Related