510 likes | 1.67k Views
Quantum Lasers. EE 566 Optical Communications Massoud MOMENI Grad Microelectronics mmomeni@buffalo.edu. Overview. Q uantum L asers Q L S ingle- Q uantum W ell L aser SQW L M ultiple- Q uantum W ell L aser MQW L S eparate C onfinement H eterostructure L aser SCH L
E N D
Quantum Lasers EE 566 Optical Communications Massoud MOMENI Grad Microelectronics mmomeni@buffalo.edu Quantum Lasers,M. Momeni
Overview • Quantum Lasers Q L • Single-Quantum Well Laser SQW L • Multiple-Quantum Well Laser MQW L • Separate Confinement Heterostructure Laser SCH L • Graded-Index SCHLaser GRINSCH L • Quantum Cascade Laser QC L • Quantum Dot Laser QD L 2. Summary 3. References and… Quantum Lasers,M. Momeni
1. Quantum Lasers LASER = Light Amplification by Stimulated Emission of Radiation Quantum Lasers,M. Momeni
V > 0 P p N EC EFn EFp nm EV hf Single-Quantum Well Laser (SQWL) Double Heterostructure: Eel Ehole Basic Laser condition: or, alternatively, Quantum Lasers,M. Momeni
p+ n+ P p n+ P p N Electrical confinement is higher for a DHS lower Ith Optical confinement is higher for a DHS Refractive Index and Mode Profile Homostructure Single Heterostructure (SHS) Double Heterostructure (DHS) n optical field Quantum Lasers,M. Momeni
P p P p P p P p P MQW DFB P p P EC EV hf hf hf hf mini bands MQW DFB Multiple-Quantum Well Laser (MQWL) MQW using isotype SQW: Quantum Lasers,M. Momeni
P p N InP InP InGaAsP InGaAs EC InGaAsP InGaAsP 5 nm 50 nm 10 nm hf SCH region x MQW region SCH region cladding cladding Separate Confinement Heterostructure (SCH) EV Quantum Lasers,M. Momeni
cladding cladding GRIN region MQW region GRIN region EV n x Graded-Index SCH Laser (GRINSCH L) EC EG( InP ) EG( InGaAsP ) EG( InGaAs ) Quantum Lasers,M. Momeni
interband transition: intersubband transition: Quantum Cascade Laser (QC L) — Principle Eappl Tunneling rate >> 3 = 1 psand 2 = 0.3 ps << 32 > 1 ps population inversion Quantum Lasers,M. Momeni
QC Laser — -Tailoring Quantum Lasers,M. Momeni
QC Laser — Data Data [1–5]: • Applications [1–6]: • Military and Security • Commercial, Medical • Free-Space Optical Communication Systems and Astronomy • Gas detection based on laser spectroscopy with CW or pulsed QC DFB lasers (chemical sensors) Quantum Lasers,M. Momeni
b) tunneling-injection QD laser: a) schematic view: Quantum Dot Lasers (QD L) — 1. Principle Quantum Lasers,M. Momeni
electrons n-cladding QD p-cladding OCL OCL holes a) Prevention of parasitic b) “Limit case” recombination in the OCL QD L — 2. Principle Quantum Lasers,M. Momeni
2. Summary Quantum Lasers use the structures we have discussed so far in order to • optimize the properties of a simple Fabry-Perot Laser (L, R, g, ), • Increase efficiency () • reduce the threshold current (Ith) and its temperature dependency, • change the wavelength of the laser beam (), • achieve continuous wave (CW) operation @ RT, and • increase the output power (P). Fabrication: • Metallorganic chemical vapor deposition MOCVD • Molecular beam epitaxy MBE Quantum Lasers,M. Momeni
What we left out… (more presentations?) Basics: • Quantum Effects (energy quantization, first and second order tunneling effect,…) • Simple Fabry Perot Laser (FPL) and characteristics • Concept of gain-guided (active) or index-guided (passive) lasers (wave guiding), e.g. in buried heterostructure lasers (BHS), or separate lateral confinement (LC) • Distributed bragg reflector (DBR), distributed feedback bragg (reflector) (DFB) R&D: • Blue Lasers or GaN Lasers • Tunable Lasers (TL) or Tunable Diode Lasers (TDL) • Vertical Cavity Surface Emitting Lasers (VCSEL) • Strained heterostructure QW lasers Quantum Lasers,M. Momeni
3. References (QC L) [1] Sirtori C., Nagle J., “Quantum Cascade Lasers: the quantum technology for semiconductor lasers in the mid-far-infrared.” Comptes Rendus Physique, In Press, Corrected Proof, Sep. 2003 http://www.sciencedirect.com/science/article/B6X19-49FGMWM-6/2/299ee308e587b6215f4731fbe5cfd566 [2] Garciaa M., Normand E., Stanley C.R., Ironside C.N., Farmer C.D., Duxbury G., Langford N., "An AlGaAs–GaAs quantum cascade laser operating with a thermoelectric cooler for spectroscopy of NH3.“ Optics Communications, In Press, Uncorrected Proof, Sep. 2003. http://www.sciencedirect.com/science/article/B6TVF-49FXMFB-3/2/607fb52178f815aca3c266c7cf670524 [3] Köhler, R., Tredicucci A., Beltram F., Beere H.E., Linfield E.H., Davies A.G., Ritchie D.A., Iotti, R.C., Rossi F., "Terahertz semiconductor-heterostructure laser" letters to nature, vol. 417 no. 6885, pp. 156–159, May 2002. [4] Sirtori C., "Applied physics: Bridge for the terahertz gap." Nature news and views, vol. 417, no. 6885, pp. 132–133, May 2002. [5] Beck M., Hofstetter D., Aellen T., Faist J., Oesterle U., Ilegems M., Gini E., Melchior H., “Continuous wave operation of a mid-infrared semiconductor laser at room temperature.” Science, vol. 295, issue 5553, pp. 301–305, Jan. 2002. [6] Kosterev A.A., Tittel F.K., "Chemical Sensors Based on Quantum Cascade Lasers." IEEE Journal of Quantum Electronics, vol. 38, no. 6, , pp. 582–591, June 2002. Quantum Lasers,M. Momeni
4. References (QD L) [7] Asryan L.V., Luryi S., "Tunneling-Injection Quantum-Dot Laser: Ultrahigh Temperature Stability" IEEE Journal of Quantum Electronics, vol. 37, no. 7, pp. 905–910, July 2001. http://www.ee.sunysb.edu/~serge/177.pdfhttp://www.ee.sunysb.edu/~serge/publist.pdf [8] Asryan L.V., Luryi S., Suris R.A., "Internal Efficiency of Semiconductor Lasers With a Quantum-Confined Active Region." IEEE Journal of Quantum Electronics, vol. 39, no. 3, pp. 404–418, March 2003. http://www.ee.sunysb.edu/~serge/191.pdf [9] Pelton M., Yamamoto Y., "Ultralow threshold laser using a single quantum dot and a microsphere cavity." Physical Review A, vol. 59, no. 3, pp. 2218–2241, March 1999. [10] Maximov M.V., Asryan L.V., Shernyakov Yu.M., Tsatsul’nikov A.F., Kaiander I.N., Nikolaev V.V., Kovsh A.R., Mikhrin S.S., Ustinov V.M., Zhukov A.E., Alferov Zh.I., Ledenstov N.N., Bimberg D., "Gain and Threshold Characteristics of Long Wavelength Lasers Based on InAs/GaAs Quantum Dots Formed by Activated Alloy Phase Separation." IEEE Journal of Quantum Electronics, vol. 37, no. 5, pp. 676–683, May 2001. [11] Luryi S., Xu J.M., Zaslavsky A., Future Trends in Microelectronics: the Nano Millennium, Wiley-IEEE Press, 2002, pp. 219–230. http://www.ee.sunysb.edu/~serge/180.pdf [12] Bludau, W. Halbleiter-Optoelektronik, München, Wien: Hanser, 1995, pp. 122–123, 151–155, 180–187. Quantum Lasers,M. Momeni
History of Lasers Welch D.F., “A Brief History of High-Power Semiconductor Lasers.” IEEE Journal of Selected Topics in Quantum Electronics, vol. 6, no. 6, pp. 1470–1477, Dec. 2000. Laser history 1917–1996:http://home.achilles.net/~jtalbot/history/ Laser at Bell Laboratories from 1958–1998:http://www.bell-labs.com/history/laser/ Quantum Lasers,M. Momeni
Where to find papers… Where to look for articles on these topics: (use ScienceDirect & IEEE Xplore®) IEEEhttp://www.ieee.org/ IEEE Journal of Quantum Electronics IEEE Photonics Technology Letters IEEE Transactions on Electron Devices IEEE Proceedings on Optoelectronics Nature http://www.nature.com/ Science http://www.sciencemag.org/ Applied Physics Letters http://ojps.aip.org/aplo/top.jsp Laser Focus World http://lfw.pennnet.com/home.cfm Elsevier http://www.elsevier.com/locate/optcom Elsevier Optics Communications Elsevier Comptes Rendus Physique Quantum Lasers,M. Momeni
… Quantum Lasers,M. Momeni
Wanna BUY a quantum laser? Go online Click on http://lfw.pennnet.com/home.cfm to get to Laser Focus World Look for “Buyers Guide” in the left column and click on it! Type the keywords! E.g. “Quantum Cascade Laser” You’ll get a list with companies (in this case just one) offering a quantum laser or something related to it, click on the entry and then the company’s link! You are transferred to the company’s website BUY ALL YOU WANT OR ALL YOU NEED! (datasheet, images etc. readily available) Quantum Lasers,M. Momeni
1. Example: Quantum Cascade Laser Laser Components Instrument Group Address: 10 Upton Drive Wilmington, MA 01887 Phone: 978-658-9100Fax: 978-658-1888URL:www.laser-components.comEmail:info@laser-components.comEmployees: 5Year Founded: 1976 Job Openings: unfortunately no… For prices, talk to Gary Hayes: 10.000 – 15.000 US $ This product is a… HIGHLIGHT! Quantum Lasers,M. Momeni
n E N 2. Example: Single-Mode SQW GRINSCH L For prices, call John Carry: Axcel Photonics, Inc.Address: 45 Bartlett Street Marlborough, MA 01752 Phone:508-481-9200Fax:508-481-9261 URL: http://www.axcelphotonics.com/Email: sales@axcelphotonics.comEmployees: 18 Job Opening: Office Manager 1 US $ per mW, up to 500 mW Quantum Lasers,M. Momeni
MQW DFB VCSEL Pricelist (all in US Dollars) • MQW DFB Structures:InGaAsP MQW DFB Structure @ 1550 nm 779.35 InGaAsP MQW DFB Structure @ 1310 nm 467.00(more than 600 $ offif you choose a FP!)AlGalnP Index guided MQW structures 24.00 – 189.70 • VCSEL Structures:8.00 (for each of 50)– 26.00 (for a single one) • Blue Laser Module 1,795.00 – 2,695.00 System 2,195.00 – 9,495.00 • Quantum Cascade Lasers astronomical, even for the diode only Sources: INTELITE, Inc. http://www.intelite.com Thorlabs GmbH http://www.thorlabs.com/index.cfm Laser Components Instrument Group www.laser-components.com Axcel Photonics, Inc. http://www.axcelphotonics.com/ Quantum Lasers,M. Momeni
Abbreviations (Alphabetical Order) Quantum Lasers,M. Momeni
For those who want to know more… Tutorial on Semiconductor Lasers Quantum Lasers,M. Momeni