330 likes | 475 Views
Pressure- and temperature- dependences of shape fluctuations in a microemulsion system. Hideki Seto. Department of Physics, Kyoto University, Japan. Michihiro Nagao ISSP, The University of Tokyo Takayoshi Takeda FIAS, Hiroshima Univ. Youhei Kawabata Tokyo Metropolitan Univ.
E N D
Pressure- and temperature- dependences of shape fluctuations in a microemulsion system Hideki Seto Department of Physics, Kyoto University, Japan Michihiro NagaoISSP, The University of Tokyo Takayoshi TakedaFIAS, Hiroshima Univ. Youhei Kawabata Tokyo Metropolitan Univ. …and many other colleagues with collaborations of
bending modulus Bending energy Spontaneous curvature Helfrich’s approach W. Helfrich, Z. Naturforsch. C28 (1973) 693 mean curvature Gaussian curvature
Phase transitions SANS/SAXS and NSE studies Phase transitions are observed with increasing temperature, pressure, ... spontaneous curvatures bending moduli change with changing conditions
AOT + D2O + n-decane water-in-oil droplet
T [˚C] 2 phase lamellae 50 binodal line 40 30 droplet 1 phase 20 f 0 0.1 0.2 0.3 0.4 0.5 0.6 T-f(droplet volume fraction) phase diagram Cametti et al.Phys. Rev. Lett. 64 (1990) 1461.
Origin of temperature dependence T lamellar structure R ~ 0 s R > 0 s w/o droplet R > > 0 s
P [ MPa ] 40 30 binodal line 2 phase Lamellae 20 droplet 1 phase 10 percolation line 0 f 0 0.1 0.2 0.3 0.4 0.5 0.6 Pressure dependence Saïdi et al.J. Phys. D : Appl. Phys. 28 (1995) 2108.
SANS measurement Nagao and Seto, Phys. Rev. E 59 (1999) 3169 upper part lower part
Determination of P(Q) and S(Q) P(Q):form factor of droplet polydisperse droplet with Schultz size distribution Kotlarchyk and Chen, J. Chem. Phys. 79 (1983) 2461. (R0: mean radius of water core) S(Q):inter-droplet structure factor hard core and adhesive potential Liu, Chen, Huang, Phys. Rev. E 54 (1996) 1698 L(Q)=1/(xr2Q2+1) :surfactant concentration fluctuation
Result of fitting I(Q)=P(Q)S(Q)+L(Q) R=51.9(Å) f=0.28 W=-3kBT e=0.0013 Z=26.1 R0=40.5 (Å) xr=10.6(Å)
Pressure-induced transition pressure
Dynamical behavior Pressure-dependence Temperature-dependence SAME? or DIFFERENT? dilute droplet Y. Kawabata, Ph. D thesis to Hiroshima Univ. dense droplet M. Nagao et al., JCP 115 (2001) 10036.
Neutron Inelastic/Quasielastic Scattering Low wavelength resolution Low energy resolution High resolution Less intensity
Neutron Spin Echo Larmor precession in a magnetic field Wavelength resolution and engergy resolution are decoupled
Advantages of NSE Highest energy resolution ~ neV I(Q,t) is observed : better to investigate relaxation processes BEST for SLOW DYNAMICS in SOFT-MATTER
Model of membrane fluctuation Zilman and Granek, Phys. Rev. Lett. 77 (1996) 4788) The Stokes-Einstein diffusion coefficient is, The relaxation rate is, Thus they obtained the stretched exponential form of the relaxation function as, where
k k k ambient-T,P high-P high-T 0.4 k T 1.4 k T 2.6 k T B B B Bending modulus G(Q)= 0.024(kBT)2/3k 1/3h -1Q3
Dilute droplet temperature / pressure AOT / D2O / d-decane (film contrast) fs=0.37 (AOT volume fraction) f =0.1 (droplet volume fraction)
Measured points AOT / D2O / d-decane (film contrast) fs=0.37 (AOT volume fraction) f =0.1 (droplet volume fraction)
T=298.15K P=22 MPa 100 ] -1 10 I(Q) [cm T=329.15K P=0.1MPa 1 T=298.15K P=0.1MPa 2 3 4 5 6 7 8 9 2 0.01 0.1 -1 ] Q [Å T=25 ˚C → 65˚C R0 ~ 32Å → 28Å p ~ 0.16 → 0.18 P=0.1 MPa → 60 MPa R0 ~ 32 Å → 30Å p ~ 0.16 Result of SANS
T=43˚C/ P=0.1MPa Room temperature/pressure T RT/ P=20MPa P NSE profiles
Expansion of the shape fluctuation into spherical harmonics damping frequency of the 2nd mode deformation up to n=2 mode gives mean-square displacement of the 2nd mode deformation shape deformation translational diffusion where Milner and Safran model Huang et al. PRL 59 (1987) 2600. Farago et al. PRL 65 (1990) 3348. n=0 mode n=2 mode
T= 19˚C T= 25˚C T= 35˚C 12 T= 49˚C temperature T= 55˚C P= 21MPa 10 P= 40MPa P= 60MPa Deff [10-7 cm2/s] 8 6 4 pressure 2 0.04 0.06 0.08 0.10 0.12 0.14 -1 Q [Å ] Effective diffusion constant
EXPERIMENTALY OBTAINED PARAMETERS KNOWN PARAMETERS From SANS experiments Seki and Komura Physica A 219 (1995) 253 Expansion of the theory Y. Kawabata, Ph. D thesis
Pressure- and temperature-dependence of k and <|a2|2> k (B): Pressure dependence of (A) : Temperature dependence of k
TB , PB : binodal point T0 , P0 : ambient temperature/pressure ambient temperature/pressure binodal point Introducing reduced pressure / temperature
Temperature Pressure Schematic picture
64 62 60 aH[Å2] 58 56 54 52 -0.8 -0.4 0.0 0.4 ^ ^ T, P Pressure- and temperature dependences of head area temperature area per molecule a H= number of surfactants per droplet pressure number of surfactants number of surfactants per droplet = number of droplets Whole volume of droplets number of droplets = volume of a droplet
pressure temperature structure dilute droplet 2-phase droplet dense droplet lamellar/bicontinuous k increase decrease microscopic tail-tail interaction counter-ion dissociation spontaneous curvature Rs k bending modulus for Gaussian curvature Summary Pressure- and temperature-dependences of the structure and the dynamics of AOT/D2O/decane were investigated.