1 / 30

Hard exclusive production at HERMES

Hard exclusive production at HERMES. Cynthia Hadjidakis. 2 nd workshop on the QCD structure of the Nucleon Rome, 12-16 June, 2006. Generalized Parton Distributions Compton scattering (DVCS) Exclusive mesons production Summary and perspectives. p 0 , r 0 L , g.

minya
Download Presentation

Hard exclusive production at HERMES

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Hard exclusive production at HERMES Cynthia Hadjidakis 2nd workshop on the QCD structure of the Nucleon Rome, 12-16 June, 2006 • Generalized Parton Distributions • Compton scattering (DVCS) • Exclusive mesons production • Summary and perspectives

  2. p0, r0L, g GPDs depend on 3 variables: x, x, t for each quark flavour Hq, for gluon Hg 0.2-0.3 (DIS) quark flavour decomposition possible from meson production Ji’s sum rule: 1 = D S + J L q q 2 Hard exclusive production of photons and mesons Q2 4 Generalized Parton Distributions (GPDs) HH conserve nucleon helicity EEflip nucleon helicity Q2>>, t<< ~ -2 x ~ x+x x-x Pseudoscalar mesons (p, h) Vector mesons (r, w, f) DVCS (g) depends on 4 GPDs t t 30%(DIS) 1 ( H(x,x,t=0) + E(x,x,t=0) ) x dx =Jquark =1/2 DS+ D Lz -1

  3. HERMES kinematics coverage GPDs formalism: Q2>>, t<< HERMES: <Q2>=2.4 (1-10) GeV2, -t < 0.5 GeV2 • collider experiments • H1, ZEUS • 10-4<xB<0.021 :gluons in the proton • fixed target experiments • COMPASS, HERMES •  0.006/0.02<xB<0.3 : gluons/valence and sea quarks • CLAS •  0.15<xB<0.6: valence quarks

  4. → e +/ e - 27.5 GeV PB= 55% Target: polarized H, D / unpolarized H, D, N, Ne, Kr, Xe 1H→<|Pt|> ~ 85 % 2H→<|Pt|> ~ 85 % 1H↑ <|Pt|> ~ 75 % HERMES spectrometer Tracking system: dP/P = 2 %, dq < 1 mrad (charged) Particle Identification: RICH,TRD,preshower, calorimeter Photon: calorimeter: dP/P = 5 % for high energy photon no recoil detection e+ p → e+g (p) only e+ and gdetected Exclusive reaction signed via the missing mass technique MX = ( e + p – e’ – g ) Exclusive reaction selected with a cut on MX Background contamination estimated with non-exclusive MC

  5. DVCS ~ ~  H, H, E, E Bethe-Heitler DVCS DVCS-BH interference leads to non-zero azimuthal asymmetry Deep Virtual Compton Scattering: e p → e’ p’ g for HERMES kinematics: DVCS <<Bethe-Heitler

  6. DVCS ~ ~  H, H, E, E ~ DsC~cosfRe{ H+ xH + k E} DsLU~sinfIm{H+ xH+ k E} DsUT  Different polarisations : ~ DsUL ~sinfIm{H+ x(H+ …} beam target DVCS asymmetries I~Ds  Different charge : e+ e-(only at HERA!) : H ~ H ~ H, H DsUT ~sinfIm{H- E + … } H, E Suppressed by kinematical factor x = xB/(2-xB ),k = -t/4M2

  7. DVCS ~ ~  H, H, E, E Beam spin and charge asymmetry Beam Spin Asymmetry Beam Charge Asymmetry [PRL87,2001] symmetrizationf → |f| (cancel sin f terms from polarized beam) [hep-ex/0605108, subm. to PRL] e+/- p→ e+/- p g (MX<1.7 GeV) ─ P1 + P2 cos f + P3 cos 2f + P4 cos 3f L=140 pb-1 L=10 pb-1 P1 = -0.01±0.02 P2 = 0.06±0.03 P3 = 0.02±0.03 P4 = 0.03±0.03 <-t> = 0.12 GeV2,<xB> = 0.1, <Q2> = 2.5 GeV2

  8. DVCS e+/- p→ e+/- p g (MX<1.7 GeV) (in HERMES acceptance) Regge, D-term Regge, no D-term fac., D-term fac., no D-term ~ ~  H, H, E, E Beam charge asymmetry: t-dependence GPD calculation: different parameterization for H [Vanderhaegen et.al. (1999)] H = double distribution~ q(x) with skewing effect D-term or not t dependence: Regge-inspired t-dependence factorized t-dependence (ebt) →ACsensitive to GPD-models tiny e-p sample (L=10 pb-1) HERA: 2004-2005e- beam (x10) P1 = -0.01±0.02 P2 = 0.06±0.03 P3 = 0.02±0.03 P4 = 0.03±0.03 <-t> = 0.12 GeV2,<xB> = 0.1, <Q2> = 2.5 GeV2 symmetrizationf → |f| (cancel sin f terms from polarized beam)

  9. DVCS ~ ~  H, H, E, E Longitudinal target spin asymmetry Lp = 50 pb-1 Ld = 170 pb-1 sin f in agreement with GPD models unexpected large sin 2f (NLO contributions): from qGq correlations twist-3 GPDs?

  10. DVCS + 2005: 2 times more statistics ~ ~  H, H, E, E Transverse target spin asymmetry ~ AUT~sin(f-fS) cos(f)Im{H- E + … }+ cos(f-fS) sin(f)Im{H + … } GPD calculation: [Goeke et.al. (2001)] , [Ellinghaus et.al. (2005)] H = double distribution Regge-inspired t-dep. D-term E = double distribution ~ sensitive to Jq: Ju(Jd=0) factorized t-dep. (dipole form factor) L= 64 pb-1 →First (model dependent) constraints on Ju and Jd ! talk by Zhenyu Ye

  11. DVCS ~ ~  H, H, E, E DVCS on nuclear target GPDs modification in nuclear matter: spatial distribution of energy, angular momentum and shear forces inside the nuclei • coherent nuclear DVCS (-t<0.05 GeV2) different from proton DVCS • incoherent nuclear DVCS similar to proton DVCS (small BH cross section on neutron at small t) • proton and deuteron data consistent • highest t-bin may be affected by associated production (30%) 2H (720 pb-1), 4He (30 pb-1), 14N (50 pb-1), Ne (86 pb-1), Kr (135 pb-1), Xe (80 pb-1) study of properties of quarks and gluons inside nuclei

  12. DVCS ~ ~  H, H, E, E Beam spin asymmetry on nuclear target L=30 pb-1 L=86 pb-1 • → clear sin f amplitude in the exclusive region for Ne and Kr • → soon: Anucleus/Aproton (He, N, Ne, Kr, Xe) • t-dependence (separation of coherent and incoherent part) • A-dependence for coherent production [Guzey et al. (2003)], [Liuti et al. (2005)]

  13. Meson production: factorization for longitudinal photons only sTsuppressed by 1/Q2→at large Q2, sL dominates Meson production: wave function: additional information/uncertainty « scaling law » asymptotically for fixed xB and t Factorization theorem for meson production Q2 Q2>>, t<< hard scale t

  14. VECTOR MESONS  H, E Vector Mesons cross sections • ~ |∫ dx H(x,x,t) + E(x,x,t) |2 E kinematically suppressed at low t H = double distribution~ q(x)/G(x) with skewing effect factorized t-dependence (ebt with slope from data) transverse target spin asymmetry AUT~ Im(H .E ) E = double distribution~ sensitive to Jq factorized t-dependence (dipole form factor) higher order corrections cancel: scaling region reached at lower Q2

  15. VECTOR MESONS Fit with skewed Breit-Wigner 0.6 < M2p< 1.0 GeV -t’< 0.4 GeV2 • data • non exclusive MC DE < 0.6 GeV -t’< 0.4 GeV2 e p → e r0(p): exclusive r0 selection r0→p+p- : h+h- detected Missing energy DE = (M2X-M2p)/2Mp (MX = e + p – e’ – h+ – h- ) 0.6 < M2h< 1.0 GeV -t’=-t+tmin<0.4 GeV2 DE < 0.6 GeV Monte Carlo simulation of non-exclusive (DIS) background

  16. VECTOR MESONS extraction of sL: r0→ p+p-angular distributions g*-p CMS 23 SDMEs (15 unpolarised, 8 polarised) extracted in 3-D: F, f, cos q r° rest frame f p’ e’ p g* e L=250 pb-1 r° p+ F q p- if SCHC holds (VM retains g* helicity): →violation of SCHC → at Q2 = 2 GeV2, sL=sT

  17. VECTOR MESONS GPD model calculations for sL: H [Vanderhaegen et.al. (1999)] • indication of a larger gluon contribution --- 2-gluon exchange --- quark exchange corrections to LO: quark transverse momenta [Diehl et.al. (2005)] [Vinnikov et.al. (2005)] • quark exchange dominates  H, E r0 longitudinal cross sections [EPJC17,2000] L = 106 pb-1 [Frankfurt et.al. (1996)] • more data to come: r, f, w, r+

  18. VECTOR MESONS - Goeke, Polyakov & Vanderhaeghen(2001) - interference between E and H sS: |ST| sin (f-fS) E H Erelated to Jq TSA sensitive to Jq  H, E r0 transverse target spin asymmetry [Vinnikov et.al. (2005)] L=64 pb-1 xB x GPD model calculations (quarks+gluons GPDs) Erelated to Jq TSA sensitive to Jq 2 times more data with 2005: sL/sTseparation → talk by Armine Rostomyan

  19. PION PAIRS  H, E Pion pairs production: e p (d)→ e’ p (d) p+ p- Legendre moment: <P1> sensitive to the interference between different p+p- isospin states

  20. PION PAIRS interference between S-wave and lower r0 tail mpp < 0.6 GeV indication of r0 –f2 interference mpp ~ 1.3 GeV minimum interference between S-P waves mpp ~ 0.77 GeV GPD model calculations for sL: ■▲ quark exchange ― quark + 2-gluon exchange [Lehmann-Dronke et.al. (2001)]  H, E Legendre Moment: Mpp dependence [PLB599,2004] L=250 pb-1

  21. PS MESONS ~ ~  H, E ~ At low tand large x, Edominated by thepion pole E related to Fp ~ p+ production: Pseudoscalar Mesons cross sections ~ ~ • ~ |∫ dx H(x,x,t) + E(x,x,t) |2 ~ E kinematically suppressed at low t H = double distribution~ Dq(x) with skewing effect factorized t-dependence ~ target spin asymmetry ~ ~ AUT~ Im(H .E )

  22. PS MESONS ~ ~  H, E GPD model calculations for sL: [Vanderhaegen et.al. (1999)] p+cross section measurement L/T separation not possible sT suppressed by 1/Q2 → at large Q2, sL dominates L=250 pb-1 supported by REGGE model [Laget (2005)] Q2 dependence is in general agreement with the theoretical expectation Corrections to LO (k┴ and soft overlap) calculations overestimate the data

  23. PS MESONS ~ ~  H, E interference between E and H sS: |ST| sin (f-fS) E H Transverse target spin asymmetry for exclusive p+ ~ ~ g*L p → p+ n [Frankfurt et al. (1999)] ~ ~ [Belitsky et al. (2001)] L = 145 pb-1

  24. Recoil detector Jan. 06 - Jun. 07 Detection of the recoiling proton associated prod. ~11% semi-incl. ~5% associated prod. ~1% semi-incl. <<1% Future analysis: recoil detector clean reaction identification improve statistical precision (Lp = 750 pb-1,Ld = 200 pb-1) → talk by Ralf Kaiser

  25. ~ ~  H E ~ H H E E ~ ~ H DVCS: LTSA ~ E excl. p+ : s ~ ~  H E  H E  H, H, E, E CONCLUSION GPDs probed by hardexclusivephoton and meson production H DVCS: BSA, BCA excl. r0: sL excl. pions pairs E: TTSA DVCS, excl. r0 Corrections to leading order are needed to describe the cross sections Leading order calculationsdescribe asymmetries Jan. 06: polarized target removed, recoil detector installed and under commissioning → HERMES dedicated to exclusive processes! ~ Asymmetries: powerful tool to constrain GPD models ~ ~ Reaction Observable GPDs ~ ep→epg BCA, BSA, L(T)TSAH (2u+d) ep→epρ0σL H (2u+d) TTSA H.E ep→epfσL H(s) ep→epωσLH(2u-d) ep→epp+p-Legendre MomentH ep→epp+σtot E(u-d) TTSA H.E ep→epp0σtotH(2u+d) ~ ~ ~ Hpp0: 2/3 Hu/p + 1/3 Hd/p Hpp+: Hu/p - Hd/p ~ Polarisation provides observable sensitive to different combinations of GPDS ~ ~ dedicated experiments for exclusive measurements starting soon at HERMES

  26. HERMES at DESY e-beam: e+/e-, Ee=27.5 GeV, PB= 55% spin rotators @ HERMES for longitudinal beam polarization

  27. ~ ~  H, H, E, E Longitudinal target spin asymmetry:sin 2f unexpected large sin 2f: from qGq correlations twist-3 GPDs? upper limits for qGq correlations twist-3 GPDs [D. Mueller]

  28. ~ ~  H, H, E, E Model dependent constraint on Ju and Jd

  29. e p→e p+n 1 • Monte Carlo (arbitrary norm.) • data p+ enhancement #events -t (GeV2) Exclusive peak clearly centered at the nucleon mass Mean and width in agreement with exclusive MC Good description of data by MonteCarlo (acceptance determination) - Vanderhaeghen, Guichon & Guidal (1999) - Exclusive p+ production: e p → e p+(n) Missing Mass2 = (p-g*-p+)2 e p → e p-n : use of p- yield to subtract the non exclusive background e p→e p+X

More Related