210 likes | 379 Views
. nanotechnology . --{{Gʀᴏᴜᴘ Mᴇᴍʙᴇʀs: ``Jovyn Tan Li Shyan(3) ``Alethea Low Hui Ping(8) ``Chow Shi An Cody(13) ``Ryan Phuah Yi Feng(15). ★ Wʜᴀᴛ ɪs Nᴀɴᴏᴛᴇᴄʜɴᴏʟᴏɢʏ?. NA · NO- prefix /nænəʊ/ 1. often nanno- Extremely small: nannoplankton. 2. One billionth (10 -9 ): nanosecond.
E N D
.nanotechnology. --{{Gʀᴏᴜᴘ Mᴇᴍʙᴇʀs: ``Jovyn Tan Li Shyan(3) ``Alethea Low Hui Ping(8) ``Chow Shi An Cody(13) ``Ryan Phuah Yi Feng(15)
★Wʜᴀᴛ ɪs Nᴀɴᴏᴛᴇᴄʜɴᴏʟᴏɢʏ? NA·NO- prefix /nænəʊ/ 1. often nanno- Extremely small: nannoplankton. 2. One billionth (10-9): nanosecond. TECH·NOL·O·GY noun /tekˈnäləjē/ 1. a. The application of science, especially to industrial or commercial objectives. b. The scientific method and material used to achieve a commercial or industrial objective. 2. Electronic or digital products and systems considered as a group: a store specializing in office technology. 3. Anthropology The body of knowledge available to a society that is of use in fashioning implements, practicing manual arts and skills, and extracting or collecting materials.
★Wʜᴀᴛ ɪs Nᴀɴᴏᴛᴇᴄʜɴᴏʟᴏɢʏ? NAN·O·TECH·NOL·O·GYnoun /ˌnænəʊˌtekˈnäləjē/ [dictionary.com] 1. a technology executed on the scale of less than 100 nanometers, the goal of which is to control individual atoms and molecules, especially to create computer chips and other microscopic devices. [wikipedia] 1. the manipulation of matter on an atomic or molecular scale. [merriam-webster] 1. the science of manipulating on an atomic or molecular scale especially to build microscopic devices (as robots).
★Wʜᴀᴛ ɪs Nᴀɴᴏᴛᴇᴄʜɴᴏʟᴏɢʏ? Nanotechnology is "the manipulation of matter with at least one dimension sized from 1 to 100 nanometres." --Wikipedia 1 millimetre : 1,000,000 nanometres. Thus, nanotechnology involves manipulating matter at an extremely small scale, such that using the regular microscope (i.e. the one we have in school), we would still be unable to study nanotechnology. It includes: → surface science; organic chemistry; molecular biology; semiconductor physics; microfabrication → much more.
★Wʜᴀᴛ ɪs Nᴀɴᴏᴛᴇᴄʜɴᴏʟᴏɢʏ? Nanotechnology is the engineering of functional systems at the molecular scale. This covers both current work and concepts that are more advanced. In its original sense, nanotechnology refers to the projected ability to construct items from the bottom up, using techniques and tools being developed today to make complete, high performance products. Two main approaches are used in nanotechnology. In the "bottom-up" approach, materials and devices are built from molecular components which assemble themselves chemically by principles of molecular recognition. In the "top-down" approach, nano-objects are constructed from larger entities without atomic-level control.
☀Usᴇs ᴏғ Nᴀɴᴏᴛᴇᴄʜɴᴏʟᴏɢʏ Currently, nanotechnology is not all futuristic and advanced, but it has made its name. With articles about it being able to cure cancer, making nuclear weapons smaller, acting as weapons, being used for water and air filtration, its all not done yet. These are all beliefs. But this is the potential of nanotechnology. The clothing industry, for example, is starting to feel the effects of nanotechnology. Eddie Bauer is currently using embedded nanoparticles to create stain-repellent khakis.This is putting stain removal companies out of business.
☀Usᴇs ᴏғ Nᴀɴᴏᴛᴇᴄʜɴᴏʟᴏɢʏ Self-cleaning household products Spraying a nano-chemical onto the grime in your kitchen and watch it disappear and practically never come back, since many nano-chemicals also prevent grime from accumulating, is not too far away. Researchers have also developed nanocomposites, a cluster of nanoparticles from different elements that can, among other things solve the pollution problem. The Pacific Northwest National Laboratory, for example, has discovered how to alter silica particles so that they attract and capture toxic particles in water. This will keep pollution at a very minimal level, so that fewer damages will be caused every year due to global warming.
☀Usᴇs ᴏғ Nᴀɴᴏᴛᴇᴄʜɴᴏʟᴏɢʏ Fact: You are putting nanoparticles next or even on yourself everyday. Example? Certain sunscreen brands have incorporated nanotechnology into their products; the use of molecularly-engineered materials means that these sunscreens are much more effective as nanoparticles are especially good when it comes to UV rays. Their minute particle size enables them to cover more skin with less cream base and since they spread more easily, you use less of the sunscreen and theoretically save money. When it comes to food and other sensitive products, plastics and packaging industries aren't blind to the fact that a healthy dose of nanotechnology will do them a lot of good. They can enable their products to last longer and perform better in many ways by simply tweaking the molecules around a little bit!
☀Usᴇs ᴏғ Nᴀɴᴏᴛᴇᴄʜɴᴏʟᴏɢʏ Medical Field Scientists have developed a type of synthetic bone(based on nanoparticles simply by engineering the components that real bone is made of. AngstroMedica has taken calcium and hydroxyapatite, a phosphate composite, broken them into their molecular components, and then made minor adjustments to those components. The result: identical to a natural bone in both structure and composition and makes an excellent synthetic substitute in areas where natural bone is missing or broken beyond repair. This is just the tip of the iceberg. Nanotechnology will be advanced, enhanced, refined, mastered, and perfected. Our lives will be much more convenient, and we will be able to save a lot of money due to nanotechnology research.
༄ Aᴅᴠᴀɴᴛᴀɢᴇs && Dɪsᴀᴅᴠᴀɴᴛᴀɢᴇs PROS: • Better manufactured products • Products have new and improved features. • Nanotechnology can revolutionise a lot of electronic products, procedures and applications. • Economic • Create new jobs as it needs more high-skilled workers, teachers and researchers. • Companies can also be created to sell, repair and install using nanotechnology. • Recycling • Creates a more efficient way of recycling that would allow any piece of trash to be recycled. • Trash in landfills could be transformed into usable goods. • Recycling can also be made cheaper and safer.
༄ Aᴅᴠᴀɴᴛᴀɢᴇs && Dɪsᴀᴅᴠᴀɴᴛᴀɢᴇs PROS (cont.): • Medicine • Creation of a new type of drugs called 'smart drugs'. • "Smart drugs' cure people faster without side effects that traditional drugs have. • In the future, nanotechnology might help regenerate tissue, repair bones and improve immunity. • Nanotechnology can potentially cure life threatening diseases. • Energy • Solar panels incorporated with nanotechnology are more efficient. • Hydrogen fuel and fuel cells are made possible with nanotechnology. • Batteries last longer and hold more energy. • Energy storage products are made smaller and more effective. • Products developed are more energy efficient and use less energy to do the same task with better results.
༄ Aᴅᴠᴀɴᴛᴀɢᴇs && Dɪsᴀᴅᴠᴀɴᴛᴀɢᴇs CONS: • Economic • Many jobs will be lost. • Even whole companies might shut down. • Certain markets might crash as the value of oil and diamonds go down. • Nanotechnology is also expensive and costs more than items we currently use • Environmental Concerns • Nanotechnology is more detrimental to the environment. • When exposed to the environment, it may create new compounds with unknown effect on the environment, most likely negative. • Nanoparticles can also easily penetrate animal and plant cells and they do not have proper means to deal with the nanowaste
༄ Aᴅᴠᴀɴᴛᴀɢᴇs && Dɪsᴀᴅᴠᴀɴᴛᴀɢᴇs CONS (cont.): • Health Risks • Nanoparticles can actually cause diseases similar to or actual mesothelioma. • The nanoparticles may change into new particles, most likely, with bad effects. • Nanoparticles may change the composition of food to where the food is very poisonous to humans. • Military • Atomic weapons can be made more accessible, more powerful and more destructive
ஐஇIᴍᴘᴀᴄᴛ ᴏғ Nᴀɴᴏᴛᴇᴄʜɴᴏʟᴏɢʏ ``What kind of impact does nanotechnology have? Nanotechnology can either potentially help us or disadvantage/destroy us, with cancer treatment as an example of help and nuclear weapons as an example of potential harm. ``Does it impact us in our daily lives? If so, how? As a matter of fact, nanotechnology does not directly impact our daily lives, but it is incorporated into our lives. For example, some of the thread on your shirt would have been created and binded using Nanotechnology! (More on dis later)
ஐIᴍᴘᴀᴄᴛ ᴏғ Nᴀɴᴏᴛᴇᴄʜɴᴏʟᴏɢʏ The good side :3 Nanotechnology is most often used to create stronger, lighter materials by binding materials at a microscopic level. For example, nanotechnology is used to create better sports equipment ranging from golf balls to protective gear. Even fashion designers use nanotechnology to make fashionable yet practical clothing! ^^
ஐIᴍᴘᴀᴄᴛ ᴏғ Nᴀɴᴏᴛᴇᴄʜɴᴏʟᴏɢʏ The awkward moment of doom when humans use it for bad stuff. No, seriously. Although nanotechnology helps make your underwear, nanotechnology is also known for increasing the reaction effect from particles. Kinda like exaggeration. For example, a bomb that would explode with 1 unit of force could explode with a lot more force with nanotechnology. Nanotechnology can increase the risk of destroying Singapore reaaaally easily. Hence, bombs and nanotechnology do NOT go well together and it is strongly suggested that you do not try. :P
ஐIᴍᴘᴀᴄᴛ ᴏғ Nᴀɴᴏᴛᴇᴄʜɴᴏʟᴏɢʏ Talking about nutshells. In a nutshell, nanotechnology has impacted us by creating stronger, lighter and more practical materials for us to use. It has sparked many discussions and debates both in the world and online. Many people have different opinions on the possible impact of nanotechnology, what will happen in the future and whether us humans should or should not continue using nanotechnology to our benefit. I do not understand why i put in so many weird images in this section. Never ask.
{ } ❝ Tʜᴀɴᴋ Yᴏᴜ. ❞ { ƒσя уσυя кιη∂ αттєηтιση. } credits to us for these awesome slidez. :D photos (c) their respective owners. we are extremely awesome and so please do not copy, steal, attempt to eat or hurt these little friends(aka slides). :D