1 / 23

Presenter : Lin, Shu -Han Authors : Jeen-Shing Wang, Jen- Chieh Chiang

A cluster validity measure with a hybrid parameter search method for the support vector clustering algorithm. Presenter : Lin, Shu -Han Authors : Jeen-Shing Wang, Jen- Chieh Chiang. PR (2008 ). Outline. Introduction of SVC Motivation Objective Methodology Experiments

misty
Download Presentation

Presenter : Lin, Shu -Han Authors : Jeen-Shing Wang, Jen- Chieh Chiang

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A cluster validity measurewith a hybrid parameter search method for the support vector clustering algorithm Presenter : Lin, Shu-Han Authors : Jeen-Shing Wang, Jen-Chieh Chiang PR (2008)

  2. Outline • IntroductionofSVC • Motivation • Objective • Methodology • Experiments • Conclusion • Comments

  3. SVC • SVC is from SVMs • SVMs is supervised clustering technique • Fast convergence • Good generalization performance • Robustness for noise • SVC is unsupervised approach • Data points map to HD feature space using a Gaussian kernel. • Look for smallest sphere enclose data. • Map sphere back to data space to form set of contours. • Contours are treated as the cluster boundaries. 3

  4. SVC - Sphere Analysis a To find the minimal enclose sphere with soft margin: To solve this problem, the Lagrangian function: 4

  5. SVC - Sphere Analysis 5

  6. SVC - Sphere Analysis Karush-Kuhn-Tucker complementarity: 6

  7. SVC -Sphere Analysis Wolfe dual optimization problem a • Bound SV; Outlier To find the minimal enclose sphere with soft margin: C : existence of outliersallowed 7

  8. SVC -Sphere Analysis Mercer kernel Kernel: Gaussian a Gaussian function: The distance (similarity) between x and a: q :|clusters|&thesmoothness/tightnessoftheclusterboundaries. 8

  9. Motivation • DrawbacksofClustervalidation • Compactness • Differentdensitiesorsize • Asthe#ofclustersincreases,itwillmonotonicdecrease • Separation • Irregularclusterstructures 9

  10. Motivation • Theirpreviousstudy • Canhandle • Differentsizes • Differentdensities • Arbitraryshape • But… 10

  11. Objectives–AclustervaliditymethodandaparametersearchalgorithmforSVCObjectives–AclustervaliditymethodandaparametersearchalgorithmforSVC • Autodeterminethetwoparameter: • Increasingqleadtoincreasing#ofclusters • Cregulatestheexistenceofoutliersandoverlappingclusters ToIdentifytheoptimalstructure 11

  12. Methodology- Idea N=64,max#ofcluster=,8 qisrelatedtothedensitiesoftheclusters Eachclusterstructurecorrespondstoanintervalofq Identifytheoptimalstructureisequivalenttofindingthelargestinterval 12

  13. Methodology- Problem Howtolocateoverallsearchrangeofq Howtodetectoutliers/noises Howtoidentifythelargestinterval 13

  14. Methodology – Locaterangeofq • Lowerbound • Upperbound:EmployK-Meanstogetclusters,andgetvarianceofeachclustersvi Ascendingorder:clustersize n=3,thebiggest3clusters’variance 14

  15. Methodology – Outlier Detection singleton outlier AndwegetCopt,removethese outlier Setq=qmax,thetightestofq 15

  16. Methodology – the largest interval qopt 16

  17. Methodology – the largest interval • Fibonaccisearch:locatetheintervalwheretheclusterstructureisthesame • Bisectionsearch • n:iteration 17

  18. Methodology– Overview Locaterangeofq the largest interval Outlier Detection 18

  19. Experiments - Benchmark and Artificial Examples 19

  20. Experiments - Outlier Copt 20

  21. Experiments ? 21

  22. Conclusions • Anewmeasure: • Inspiredfromtheobservationsofq • DeterminetheoptimalclusterstructurewithitscorrespondingrangeofqandC q C

  23. Comments • Advantage • Inspiredfromobservationofparameter • Drawback • … • Application • SVC • DBSCAN:MinPts/Eps

More Related