550 likes | 629 Views
T. Barnes ORNL / UTenn SLAC HEP Seminar 23 Feb. 2006. The XYZs of c c : X(3943), Y(3943), Z(3931) and Y(4260). 1. Good old charmonium. 2. The new states: 3S c c ? 2P c c ? c c hybrids? How to test these possibilities. New theor. results mainly abstracted from:
E N D
T. Barnes ORNL / UTenn SLAC HEP Seminar 23 Feb. 2006 The XYZs of cc: X(3943), Y(3943), Z(3931) and Y(4260) 1. Good old charmonium. 2. The new states: 3S cc? 2P cc? cc hybrids? How to test these possibilities. New theor. results mainly abstracted from: T.Barnes, S.Godfrey and E.S.Swanson, hep-ph/0505002, PRD72, 054026 (2005).
LGT simulation showing the QCD flux tube Color singlets and QCD exotica “confinement happens”. Q Q R = 1.2 [fm] “funnel-shaped” VQQ(R) linear conft. (str. tens. = 16 T) Coul. (OGE) QCD flux tube (LGT, G.Bali et al.; hep-ph/010032)
(q2q2),(q4q),… (q3)n, (qq)(qq),(qq)(q3),… multiquark clusters nuclei / molecules dangerous e.g. Q(1540) ca. 106 e.g.s of (q3)n, maybe 1-3 others X(3872) = DD*! g2, g3,… qqg, q3g,… q2q2, q4q,… glueballs hybrids multiquarks maybe 1 e.g. maybe 1-3 e.g.s Physically allowed hadron states (color singlets) (naïve, valence) _ Conventional quark model mesons and baryons. qq q3 100s of e.g.s Basis state mixing may be very important in some sectors. “exotica” :
qq mesonsstates The quark model treats conventional mesons as qq bound states. Since each quark has spin-1/2, the total spin is Sqq tot = ½ x ½ = 1 + 0 Combining this with orbital angular momentum Lqqgives states of total Jqq = Lqqspin singlets Jqq = Lqq+1, Lqq, Lqq-1spin triplets
qq mesonsquantum numbers ParityPqq = (-1)(L+1) C-parity Cqq = (-1)(L+S) The resulting qq NL states N2S+1LJ have JPC= 1S: 3S11-- ; 1S00 -+ 2S: 23S11-- ; 21S00 -+ … 1P: 3P22+ + ; 3P11+ + ; 3P00+ + ; 1P11+-2P … 1D: 3D33- - ; 3D22- - ; 3D11- - ; 1D22-+2D … JPC forbidden to qq are called “JPC-exotic quantum numbers” : 0- - ; 0+ - ; 1- + ; 2+ - ; 3- + … Plausible JPC-exotic candidates = hybrids, glueballs (high mass), maybe multiquarks (fall-apart decays).
The (higher) cc spectrum Pre-dawn, a lava field near Carrizozo, New Mexico.
Charmonium (cc) A nice example of a QQ spectrum. Expt. states (blue) are shown with the usual L classification. Above 3.73 GeV: Open charm strong decays (DD, DD* …): broader states except 1D2 2- +, 2- - 3.73 GeV Below 3.73 GeV: Annihilation and EM decays. (rp, KK* , gcc, gg, l+l-..): narrow states.
Contact S*S from OGE; Implies S=0 and S=1 c.o.g. degenerate for L > 0. (Not true for vector confinement.) Minimal quark potential model physics: OGE + linear scalar confinement; Schrödinger eqn (often relativized) for wfns. Spin-dep. forces, O(v2/c2), treated perturbatively. Here…
Fitted and predicted cc spectrum Coulomb (OGE) + linear scalar conft. potential model blue = expt, red = theory. L*S OGE – L*S conft, T OGE as= 0.5538 b = 0.1422 [GeV2] mc = 1.4834 [GeV] s = 1.0222 [GeV] S*S OGE
Fitted and predicted cc spectrum Coulomb (OGE) + linear scalar conft. potential model NR model (LHS) adjacent to GI model (RHS). 1F 2P GI NR S*S OGE
cc from LGT A LGT e.g.: X.Liao and T.Manke, hep-lat/0210030 (quenched – no decay loops). Broadly consistent with the cc potential model. No cc radiative or strong decay predictions from LGT yet. <-1- + exotic cc-H at 4.4 GeV Small L=2 hfs. 1+ - cc has returned.
4040 4415 3770 4160 Strong widths of cc resonances
What are the total widths of cc states above 3.73 GeV? (These are dominated by open-flavor decays.) 43(15) MeV 78(20) MeV 52(10) MeV < 2.3 MeV X(3872) 23.6(2.7) MeV PDG values
g0 g0 br vector confinement??? controversial Experimental R summary (2003 PDG) How do open-flavor strong decays happen at the QCD (q-g) level? Very interesting open theoretical question: Do strong decays use the3P0model decay mechanism orthe Cornell model decay mechanism or … ? e+e-, hence 1-- cc states only. “Cornell” decay model: (1980s cc papers) (cc) <-> (cn)(nc) coupling from qq pair production by linear confining interaction. Absolute norm of G is fixed!
An alternative strong decay model The 3P0 decay model: qq pair production with vacuum quantum numbers. LI = g y y . A standard for light hadron decays. It works for D/S in b1-> wp. The relation to QCD is obscure.
One success of strong decay models An historical SLAC puzzle explained: the weakness of y(4040) -> DD e.g. DD molecule? After restoring this “p3 phase space factor”, the BFs are: D0D0 : D0D*0 : D*0D*0 0.12 +/- 0.06 0.95 +/- 0.19 [1] +/- 0.31
Theor R from the Cornell model. Eichten et al, PRD21, 203 (1980): 4415 4040 4159 D*D* DD* DD Y(4040) Y(4040) partial widths [MeV] (3P0 decay model): DD = 0.1 DD* = 32.9 D*D*= 33.4 [multiamp. mode] DsDs= 7.8 Y(4040) ->D*D* amplitudes (3P0 decay model): 1P1 = +0.034 5P1 = -0.151 = - 2 * 51/2 *1P1 5F1 = 0 famous nodal suppression of a 33S1Y(4040) cc-> DD std. cc and D meson SHO wfn. length scale
2. The new XYYZ states: 3S cc? 2P cc? cc hybrids? How to test these possibilities.
BGS, hep-ph/0505002, PRD72, 054026 (2005). Possible new cc states at these masses! Z;X,Y;Y Reminder: Three as yet unknown 1D states. Predicted to have G < 1 MeV! cc spectrum, potential models (dashed: nonrel L, Godfrey-Isgur R) vs data 2P or not 2P?
cc spectrum, potential models (dashed: nonrel L, Godfrey-Isgur R) vs data Possible new C=(+) cc states from e+e- ! 2P or not 2P?
An interesting new charmonium production mechanism! Allows access to C=(+) cc states in e+e- w/o using gg. X(3943) X(3943) hc’ hc c0 No c1or c2 !? [ref] = Belle, hep-ex/0507019, 8 Jul 2005. n.b. Eichten: X(3943) may be the 31S0 cchc’’.
Strong Widths: 3P0 Decay Model 3S 33S1 74 [MeV] 31S0 80 [MeV] DD DD* D*D* DsDs X(3943) Maybe not 2P? X(3943) = 31S0hc” ? (Eichten) 52(10) MeV X(3872)
Back to the main theme: Comparing expt. with theory for 2P cc states. 1st Strong decays (vs. expt.) 2nd EM (g and gg transitions)
Trivial observations for 2P cc open-charm strong decays: Thresholds DD 3.73 GeV DD* 3.87 GeV (Ds Ds 3.94 GeV - small) JP-allowed D, D* modes (M < D*D*) c2’ 2++ 23P2 DD, DD* c1’ 1++ 23P1 DD* c0’ 0++ 23P0 DD hc’ 1+- 21P1 DD* but C = (-) Looking for both DD and DD* is a good filter! n.b. JP = 1+DD* final states have both S and D amps. Detailed 2P cc predictions…
2P cc Strong Widths: 3P0 Decay Model 23P2 80 [MeV] 23P1 165 [MeV] 23P030 [MeV] 21P1 87 [MeV] 2P DD DD* DsDs (assuming NR cc potential model masses; BGS, hep-ph/0505002, PRD72, 054026 (2005).)
Y(3943) B-> KY(3943), Y->wJ/y [ref] = Belle, PRL94, 182002 (2005).
Y(3943) Y(3943) = 23P1 cc?(Too light for cc-H.) Gtot Expt for Y(3943): B -> KY(3943), Y->wJ/y G= 87 +/- 22 MeV 1++ cc ->wJ/yis unusual; cc-> virtual DD* e.g. ->wJ/y ? n.b.c1IS seen in B decays theory expt. Theory for 23P1(3943): G= 135 MeV A strong DD* mode $? The only open-charm mode?
Z(3931) gg->Z(3931)-> DD [ref] = Belle, hep-ex/0507033, 8 Jul 2005.
Z(3931) Z(3931) = 23P2 cc ? (suggested by Belle) Expt for Z(3931): gg -> Z(3931) -> DD G = 20 +/- 8 +/- 3 MeV Ggg* BDD = 0.23 +/- 0.06 +/- 0.04 keV Theory for 23P2(3931): G= 47 MeV DD*/DD = 0.35 Ggg* BDD = 0.47 keV (Ggg from T.Barnes, IXth Intl. Conf. on gg Collisions, La Jolla, 1992.) The crucial test of Z(3931) = 23P2 cc : DD* mode $? Gtot thy expt Gggin http://web.utk.edu/~tbarnes/website/Barnes_twophot.pdf
Expt for Z(3931): gg -> Z(3931) -> DD G= 20 +/- 8 +/- 3 MeV Ggg* BDD = 0.23 +/- 0.06 +/- 0.04 keV Theory for 23P0(3931): G: DD only o.c. mode, theor. tiny! (node) Annih. dominates? Recall G(c0)ca. 10MeV. Ggg ca. 2 keV (not calc.) Ggg* BDD << 2 keV. Another possibility for Z(3931)??? Z(3931) Another possibility for Z(3931)???
EM transitions (How one might make 2P cc states.) What radiative partial widths do we expect from various initial 1- - cc states to 2P cc states?
Strong Widths: 3P0 Decay Model 3S 33S1 74 [MeV] 31S0 80 [MeV] DD DD* D*D* DsDs X(3872) 52(10) [MeV]
E1 Radiative Partial Widths 3S -> 2P 33S1->23P214 [keV] 33S1->23P139 [keV] 33S1->23P054 [keV] 31S0->21P1105 [keV] 3S -> 1P 33S1->3P2 0.7 [keV] 33S1->3P1 0.5 [keV] 33S1->3P0 0.3 [keV] 31S0->1P19.1[keV]
Strong Widths: 3P0 Decay Model 23D3 148 [MeV] 23D2 92 [MeV] 23D1 74 [MeV] 21D2 111 [MeV] 2D DD DD* D*D* DsDs DsDs* 78(20) [MeV]
E1 Radiative Partial Widths 23D3 -> 23P2239 [keV] 23D2->23P2 52 [keV] 23P1298 [keV] 23D1->23P2 6 [keV] 23P1168 [keV] 23P0483 [keV] 21D2->21P1 336 [keV] 2D -> 2P 2D -> 1F 23D3 -> 3F4 66 [keV] -> 3F3 5 [keV] -> 3F2 14 [keV] 23D2-> 3F3 44 [keV] 3F2 6 [keV] 23D1->3F251 [keV] 21D2->1F3 54 [keV] 23D3 -> 3P2 29 [keV] 23D2-> 3P2 7 [keV] 3P1 26 [keV] 23D1->3P2 1 [keV] 3P1 14 [keV] 3P0 27 [keV] 21D2->1P1 40 [keV] 2D -> 1P
cc spectrum, potential models (dashed: nonrel L, Godfrey-Isgur R) vs data Possible 1- - state Y(4260). Note no plausible cc assignment exists. A1- - charmonium hybrid??
Y(4260) e+e- -> Y(4260)ISR, Y -> p+p-J/y [ref] = BaBar, PRL95, 142001 (2005). Not seen in R. Hmmm?! log scale
Y(4260) ? B- -> K- Y(4260), Y -> p+p-J/y [ref] = BaBar, hep-ex/0507090 (21 Jul 2005).
Characteristics of cc-hybrids. (folklore, mainly abstracted from models, some LGT) States (flux-tube model): The lightest hybrid multiplet should be a roughly degenerate set containing 3 exoticand 5 nonexotic JPC; 0+-, 1-+, 2+-, 0-+,1+-,2-+, 1++,1-- Mass ca. 4.0 – 4.5 GeV, with LGT preferring the higher range. The 1-- should be visible in e+e- but with a suppressed width. (Hybrid models for different reasons predict ycc(r=0) = 0, suppressing Gee .) Decays (flux-tube model and f-t decay model): Dominant open-charm decay modes are of S+P type, not S+S. (e.g. DD1 not DD or DD*). n.b. p1(1600) ->p h’ argues against this model. LGT(UKQCD): Closed-charm modes like cc-H -> cc + light mesons are large! (Shown for bb-H; (bb) is preferentially P-wave, and “light mesons” = scalar pp.)
E.I.Ivanov et al. (E852) PRL86, 3977 (2001). p1(1600) The (only) strong JPC-exotic H candidate signal. p-p ->p-h’p p1(1600) 1-+ exotic reported in p-h’ ph’is a nice channel because nn couplings are weak for once (e.g. the a2(1320) noted here). The reported exotic P-wave is dominant!
A LGT cc-sector spectrum e.g.: X.Liao and T.Manke, hep-lat/0210030 (quenched – no decay loops) Broadly consistent with the cc potential model. No LGT cc radiative or strong decay predictions yet. cc and cc–H from LGT <-1- + exotic cc-H at 4.4 GeV n.b. The flux-tube model of hybrids has a lightest multiplet with 8 JPCs; 3 exotics and 5 nonexotics, roughly degenerate: (0,1,2) +- /-+, 1++,,1- -. Y(4260)? Small L=2 hfs.
PRD52, 5242 (1995). Early cc-H mass estimates:
cc-H mass result, 1995 BCS flux tube model calculation ([ref] on prev. slide):