1 / 19

IFT3335 – Introduction à l’intelligence artificielle

IFT3335 – Introduction à l’intelligence artificielle. Organisation du cours. IFT3335 - 2014. Page web du cours: www.iro.umontreal.ca/~nie/IFT3335 Livres: S. Russell and P. Norvig Artificial Intelligence: A Modern Approach Prentice Hall, 2003, Third Edition / 2010

molimo
Download Presentation

IFT3335 – Introduction à l’intelligence artificielle

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. IFT3335 – Introduction à l’intelligence artificielle Organisation du cours

  2. IFT3335 - 2014 • Page web du cours: www.iro.umontreal.ca/~nie/IFT3335 • Livres: • S. Russell and P. Norvig Artificial Intelligence: A Modern Approach Prentice Hall, 2003, Third Edition / 2010 • Professeur: Jian-Yun Nie (#2241, nie@iro) • Démonstrateur: Alessandro Sordoni et Arbi Bouchoucha (dift3335@iro)

  3. Évaluation • Examens • Intra: 20% (2 heures) • Final 30% (3 heures) • Exercices sur papier • 4 exercices individuels – 5% chaque (20%) • Travaux pratique (programmation) • 3 TP en groupe de 2 personnes – 10% chaque (30%) • Langage de programmation • Python et autres • Ressources: • http://aima.cs.berkeley.edu • http://aima.cs.berkeley.edu/code.html (code)

  4. Horaire • Mardi (cours) 15:30-16:30 • Mercredi (cours) 13:30-15:30 • Mardi (TP) 16:30-19:30 • Examen intra: • Mercredi 29 octobre, 13:30-15:30 • Examen final: • Mardi 9 décembre, 15:30-18:30

  5. Aperçu du cours • Introduction (chap.1)et Notion d’agent (chap. 2) (1 semaine) • Recherche (chap. 3,4,5) (2 sem.) • Logique (chap. 7,8,9) (2 sem.) • Incertitude (chap.13,14) (2 sem.) • Apprentissage (chap.18,20) (2 sem.) • Traitement auto. de langue naturelle (chap. 22,23) (2 sem.) • Conclusions et Révision (1 sem.)

  6. IFT3335 – Introduction à l’intelligence artificiellepartiellement basé sur le cours de NUS et Berkeley IFT3335 – Introduction à l’intelligence artificiellepartiellement basé sur le cours de NUS et Berkeley Introduction: Chap. 1

  7. Qu’est l’IA? • "the scientific understanding of the mechanisms underlying thought and intelligent behavior and their embodiment in machines” (Association for the Advancement of Artificial Intelligence – AAAI) • Compréhension de l’intelligence • Implantation dans des machines

  8. Intelligence = ? • Raisonnement • Connaissances • Capacité d’analyse, abstraction/généralisation • Apprentissage • Capacité d’adaptation • Communications • Perceptions • Capacité d’exécution • IQ vs. EQ • …?

  9. Qu’est IA? IA vue de 4 angles: humainement rationnellement Penser Agir Humainement: faire comme l’humain Rationnellement: faire comme une personne rationnelle Penser: mécanisme de fonctionner Agir: résultat Livre de référence: « Agir rationnellement »

  10. Agir humainement: Test de Turing • Turing (1950) « Computing machinery and intelligence » • ”Est-ce que la machine peut penser"  ”Est-ce que la machine peut se comporter de façon intelligente? » (comme un humain) • Test opérationnel pour le comportement intelligent: le jeu d’imitation • Question par l’interrogateur • Réponse par l’humain ou le système IA • Est-ce que l’interrogateur arrive à distinguer l’humain et le système?

  11. Test de Turing • Premier test objectif • Certaines limitations du test • La communication se fait en langue naturelle (point faible pour le système) • Se limiter à l’intelligence humaine (e.g. incapable de faire des calcul complexe) • Facile à piéger le système • Il état prédit qu’en 2000, une machine pourrait avoir 30% de chance de tromper une personne pour 5 minutes. • L’article a anticipé tous les arguments majeurs contre l’IA pendant les 50 années à venir • Suggéré les composants de l’IA: connaissances, raisonnement, compréhension de langage, apprentissage

  12. Penser humainement: modélisation cognitive • “Révolution cognitive” en 1960s: psychologie basée sur le traitement d’informations • Besoin des théories scientifiques pour des activités internes du cerveau. • -- Comment valider? 1) prédire et tester les comportements des sujets humains (top-down) ou 2) identification directe des données neurologiques (bottom-up) • Ces 2 approches (grosso modo, science cognitive et neuroscience cognitive) sont maintenant des domaines distincts de l’IA

  13. Penser rationnellement: “lois de pensée” • Aristote: Quels sont les processus d’arguments / de pensée correctes? • Quelques écoles grecques ont développé de différentes formes de logique: notationet règles de dérivation pour pensées; peut précéder l’idée de mécanisation ou non. • Ligne directe des mathématiques et philosophie vers l’IA moderne • Problèmes: • Tous les comportements intelligents ne sont pas nécessairement des résultats des délibérations logiques • Quel est le processus de penser? Quelles pensées dois-je avoir?

  14. Agir rationnellement: Agent rationnel • Comportement Rationnel: Faire des choses correctes • Choses correctes: celles qui sont censées de maximiser la réalisation des objectifs, étant donné des informations disponibles • N’implique pas nécessairement la pensée, e.g. clignement reflex. Mais la pensée peut être utilisée pour servir des actions rationnelles

  15. Agent rationnel • Un agent est une entité qui perçoit et qui agit. • Ce cours vise à développer des agents rationnels • De façon très abstraite, un agent est une fonction qui mappe des histoires de perception vers des actions: [f: P*A] • Pour une classe quelconque d’environnement et de tâche, nous visons à développer des agents (ou classes d’agents) qui produisent la meilleure performance • Mais des limitations computationnelles font en sorte que la rationalité parfaite n’est pas atteignable.  Développer le meilleur programme pour des ressources machine données

  16. Préhistoire IA • Philosophie logique, méthode de raisonnement, idées comme système physique pour l’apprentissage, langage, rationalité • Mathématiques représentation formelle et algorithmes de preuve, calcul, (in)décidabilité, (in)tractabilité, probabilité • Économie utilité, théorie de décision • Neuroscience substrat physique pour des activités mentales • Psychologie phénomène de perception et contrôle de moteur, techniques d’expérimentation • Informatique Construire des ordinateurs rapides, algorithme • Théorie de contrôle concevoir des systèmes qui maximisent un objectif • Linguistique représentation de connaissances, grammaires

  17. Histoire abrégée de l’IA • 1943 McCulloch & Pitts: Modèle de circuit booléen pour cerveau • 1950 Turing "Computing Machinery and Intelligence" • 1956 Réunion de Dartmouth: nom d’intelligence artificielle • 1952—69 Look, Ma, no hands! • 1950s premiers programme d’IA, y compris le programme d’échecs de Samuel, Logic Theorist de Newell & Simon Engin de Géométrie de Gelernter • 1965 Algorithme complet de Robinson pour le raisonnement logique • 1966—73 L’IA découvre la complexité de calcul, les réseaux de neurones a presque disparu • 1969—79 Premiers développements de systèmes basés sur des connaissances • 1980-- L’IA devient une industrie • 1986-- Réseaux de neurones redeviennent populaires • 1987-- L’IA devient une science • 1995-- L’émergence des agents intelligents • 2000-- intelligence à partir des données (Watson, Big data, …)

  18. État de l’art: quelques faits • Deep Blue a battu le champion des échecs Garry Kasparov en1997 • Prouvé une conjecture mathématique (Robbins conjecture) non résolue pendant des décennies • Durant la guère du Golfe en 1991, l’armée US a déployé un programme IA pour la planification logistique pour jusqu’à 50,000 véhicules, cargo, et personnes • Le programme de planification autonome a contrôlé des ordonnancements des opérations à bord d’une navette spatiale • Proverb a résolu les mots croisés mieux que la plupart des humains • Voiture sans conducteur de Google – sans accident pendant 300 000 miles (2012)

  19. Référence en ligne • Histoire de l’IA • http://aitopics.org/misc/brief-history

More Related