1 / 14

Tests of Fast Timing Detectors in the Meson Test Beam (T979) MTest : May 27 th – June 2 nd

Tests of Fast Timing Detectors in the Meson Test Beam (T979) MTest : May 27 th – June 2 nd. Mike Albrow, Sasha Pronko, Erik Ramberg, Anatoly Ronzhin, Andriy Zatserklyaniy + detector simulations by Hans Wenzel & Earle Wilson (student). Motivations for ~ ps / 10 ps timing detectors

mona-booth
Download Presentation

Tests of Fast Timing Detectors in the Meson Test Beam (T979) MTest : May 27 th – June 2 nd

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Tests of Fast Timing Detectors in the Meson Test Beam (T979)MTest : May 27th – June 2nd Mike Albrow, Sasha Pronko, Erik Ramberg, Anatoly Ronzhin, Andriy Zatserklyaniy + detector simulations by Hans Wenzel & Earle Wilson (student) • Motivations for ~ ps / 10 ps timing detectors • Set-up and triggers etc. • Detector configurations: • A – B – C in line • A+B transverse bars – C • C) Q-bar1(A) – Q-bar2(B) – C • D) Aerogel(C) – B • E) Si-PMTs • F) Photonis1 – Photonis2 – C in line • G) Q-bar1(A) – Q-bar2(B) – 8.7 m flight path --- C in line • Thoughts about next steps To be explained! Only if you ask!

  2. Motivations: Timing on single particles σ(t) typically >~ 100 ps A factor 10 – 100 improvement likely to have unforeseen benefits. We know of some (foreseen), e.g.: 2 1 Particle ID in large detectors (~CDF-like or ILC) E.g. at 6 GeV/c, over 1.5m: Δt(π-K) = 17 ps Δt(K-p) = 43 ps ================== Areas ~several m2, want thin. Argonne-Chicago- (Henry Frisch et al.) Fermilab group Particle ID in beams E.g. at 25 GeV/c, over 15m: Δt(π-K) = 20 ps Δt(K-p) = 50 ps or at 10 GeV/c, over 30m: Δt(π-e) = 10 ps ================== Areas ~few cm2, want thin. 3 Pile-up reduction e.g. in FP420: Extensions to CMS & ATLAS in prepn. p + p  p + H + p + nothing else Measure p’s  M(H), J, C, P, Γ 4 • PET-TOF • β+e  Δt = 10ps : Δz = 3mm 240m … 420m CMS H 240m … 420m p p

  3. Pile-up reduction in FP420 Want L ~ 10^34, <n> ~ 25/x ? z(vertex) from pp == z(vertex) central cf σ(z)vtx ~ 60 mm to CMS Exec Board Summer 2008 (ATLAS is also reviewing)

  4. At MTest, 120 GeV/c p, ~40,000/spill Simple trigger (schematic): 2mm x 2mm scint. VETO w/hole 2 PMTs in AND 2 PMTs in OR First A-B-C in line Dark & shielded box 210 C A B PHOTEK 210 2 MCP, 10mm Φ PHOTEK 240 2 MCP, 40mm Φ Calibrate electronics resolution with same pulse  start & stop: σ~ 3 ps Cerenkov light in Quartz window. HV ~ 4.5 kV, G ~ 5.10^5 Schematic DAQ : ADC DAQ MCP- PMT-A ORTEC 566, 567 TAC/SCA T1 ORTEC AD114 ADC ATTENUATOR MCP- PMT-B ATTENUATOR ADC

  5. A-B-C in-line results: Cerenkov light in PMT windows All numbers “preliminary”, to be double-checked ADC distributions: cut out tails and stragglers (~ 10%) T1 = tA – tB T2 = tA – tC T3 = tB – tC ======= Check Ti(PH A,B) Make slewing corrections Unfold: A B C etc. PMT-1 (Photek-210, 4.7 kV)=12.0 psPMT-2 (Photek-210, 4.6 kV)=12.0 psPMT-3 (Photek-240, 4.2 kV)=7.7 ps Cerenkov light in PMT windows

  6. Double Q-bar Quartz (fused silica) bars 6mm x 6mm x 90mm  PHOTEK 210 Mounted at Cherenkov angle θc ~ 48deg. on opposite sides. dz = 6mm/sin(48) = 8.1mm. Some light direct to PMT, ~1/2 TIR to PMT Black “sock” over bars just to avoid light sharing Unfold: σ(A) = 22.3 ps σ(B) = 30.5 ps B Includes electronics (~3 ps) and 2 mm beam width smear (A,B) Δt = 2 mm x (10 ps/2 mm) C A Combining [AB] removes beam spread (later, tracking)

  7. Resolution of Double-Qbar as one device * σ = 6.04 ch = 18.7 ps Unfold C = 7.7 ps, σ(AB) = 17.0 ps Resolution of double-Qbar 2 mm x-spread not to be subtracted (only 3 ps electronics) * Derivation in back-up

  8. Switched on, saw signals! A = Aerogel B Corrected T2 = A-B = 10.8 ch = 33.5 ps (before unfolding)

  9. Aerogel results: Unfolding indirect because only 2 PMTs in run. A (Aerogel on 240) and B(210 in beam) T1 = t(A) – t(B) corrected for smearing: 10 mm aero  σ(T1) = 43.7 ps 20 mm aero  σ(T1) = 45.3 ps 30 mm aero  σ(T1) = 33.5 ps <P.H.> = 46 ch. (10mm)  72 ch. (30 mm) Unfold with σ(1) = 12 ps from in-line σ (Aerogel 30 mm) ~ 31 ps Aerogel + mirror ~ massless & short (~ 5 cm), simple. Can have several in line, independent  √N BUT: have large 240 tube close to beam Possibilities to focus light : smaller tube farther away, to be simulated MCP-PMT AEROGEL

  10. Tests of SiPMs = silicon photomultipliers Eight Hamamatsu SiPMs, 3mm x 3mm In beam with quartz Cherenkov radiators several thicknesses (4 – 12mm), mirrored and not mirrored. Best conditions σ(t) ~ 33 – 37 ps 10-15 photoelectrons Channels Between SiPMs and C. Slewing correction applied

  11. World’s Best Beamline Time-of-Flight System? Start = Double-Q-bar Stop = Photek 240 Start-stop dist. = 8.7 m Predictions of proton positions 24 psec resolution positron peak, Using average of A & B times Can measure momentum of a proton with 2 MCP-PMTs! (if you know it’s a proton!)

  12. Possible Next Steps For FP420 a σ(t) = 10 ps edgeless detector  we learnt a way including CMS-compatible electronics/DAQ with reference time signals (jitter <~ 5 ps) Should get < 8 ps θc = 48deg Q-bars onto PHOTEK 240 MCP-PMTs 20mm 6mm x 6mm bars TIR: isolated MCP I “beam” only 6mm vert., 20 mm horiz. MCP 40 mm diam. MCP p + More aerogel? To test in Fall?

  13. We thank: PHOTEK Ltd (UK) for loan of MCP-PMTs Accelerator Division Ops for beam, and patience over many accesses Jim Pinfold and Don Summers for gift of aerogel Carl Lindenmeyer and John Korienek for Q-bar support Rick Coleman for low energy beams Hogan Ngyuen & SiDet dept. for many things LHC beam From FP420 R&D doc.

  14. Back Up Why: T1 = A - BT2 = A - CT3 = B - C  ------------T1 + T2 = A - B + A - C3 x T3 = 3B - 3Cso T1 + T2 + 3x T3 = A - B + A - C + 3B - 3C = 2A + 2B - 4Cand 1/4 ( T1 + T2 + 3x T3 ) =  (A+B)/2 - C 

More Related