1 / 14

Module 7 : Géométrie algorithmique

Module 7 : Géométrie algorithmique. Plan du module. Aire d’un triangle Problème 361. Aire d’un triangle. Dans espace 2D. C. B. A. Aire d’un triangle. Avantages : Calcul efficace Signe de l’aire : > 0 si C est à gauche de AB (counterclockwise)

monet
Download Presentation

Module 7 : Géométrie algorithmique

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Module 7 : Géométrie algorithmique

  2. Plan du module • Aire d’un triangle • Problème 361 Géométrie algorithmique

  3. Aire d’un triangle • Dans espace 2D C B A Géométrie algorithmique

  4. Aire d’un triangle • Avantages : • Calcul efficace • Signe de l’aire : • > 0 si C est à gauche de AB (counterclockwise) • < 0 si C est à droite de de AB (clockwise) • = 0 si colinéaires Géométrie algorithmique

  5. Distance • Distance entre deux points A et B Géométrie algorithmique

  6. Aire d’un polygone convexe • La surface d’un polygone convexe est donnée par la formule : Géométrie algorithmique

  7. Convex Hull P10 P7 P9 P6 P5 P3 P11 P8 P4 P12 P2 P1 Po Géométrie algorithmique

  8. P10 P7 P9 P6 P5 P3 P11 P8 P4 P12 P2 P1 Po Convex Hull – Graham scan Géométrie algorithmique

  9. Convex Hull – Graham scan • As shown, Graham’s scan starts from a point (p0) and calculates all the angles it makes to all the points and sorts the angles in polar order Géométrie algorithmique

  10. Convex Hull – Graham scan • It selects the point with the least angle and starts traversing (P0-P1). • Then P1 to P2 • From P2 to P3 it realizes that it takes a right turn, so it backtracks and selects P1 – P3 directly, otherwise polygon not convex Géométrie algorithmique

  11. Convex Hull – Graham scan • The algorithm continues, based on the above mentioned conditions till it reaches back to the initial point. Hence forming the Convex Hull as shown: Géométrie algorithmique

  12. Convex Hull – Graham scan Géométrie algorithmique

  13. Convex Hull – Graham scan Géométrie algorithmique

  14. Convex Hull – Graham scan • Once the initial point is reached the algorithm self terminates, and the Convex Hull is formed. Géométrie algorithmique

More Related