1 / 34

Iain Moore JYFL, Finland

Gas jet laser ionization: developments towards selective RIB production and studies of exotic atoms. Iain Moore JYFL, Finland. I.D. Moore, 1st Topical Workshop on Laser-Based Particle Sources , Feb . 2013. Outline of talk. General introduction to RIB production

monty
Download Presentation

Iain Moore JYFL, Finland

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Gas jet laser ionization: developments towards selective RIB production and studies of exotic atoms Iain Moore JYFL, Finland I.D. Moore, 1st Topical Workshop on Laser-BasedParticleSources, Feb. 2013

  2. Outline of talk • General introduction to RIB production • Probing the gas jet • In-jet laser ionization • Outlook I.D. Moore, 1st Topical Workshop on Laser-BasedParticleSources, Feb. 2013

  3. General methods of RIB production (I) ISOL method High-energy primary beam Born in 1951, NielsBohr Institute Radioactive atoms Low-energy ion beam kV Highyieldbutdifficult for refractory elements, chemicallyactiveelements. Mass selection Z and T1/2dependence ISOL facilities: TRIUMF, GANIL, ALTO, ISOLDE (Wed. talks) SPES (Thurs.) I.D. Moore, 1st Topical Workshop on Laser-BasedParticleSources, Feb. 2013

  4. General methods of RIB production (II) In-flightmethod High-energy primary beam Firstin-flightseparator, OakRidge (1958) Projectile fragments Isotope selection Medium-energy ion beam Veryfastseparation, access to μs half-lives andbeams of ALL elements. Oftenpoorbeamquality. Precisionexperiments at low-energynot directlyaccessible. I.D. Moore, 1st Topical Workshop on Laser-BasedParticleSources, Feb. 2013

  5. The ionguide / gascatchermethod …an ISOL system for ALL elements, fastextraction ``The best of bothworlds´´ Projectilesource Fastbeams Purificationin-flight Thintarget Neutralization Ionsurvival electricalfields massseparator Laser re-ionization Z selectivity; Laser Ion Guide IGISOL I.D. Moore, 1st Topical Workshop on Laser-BasedParticleSources, Feb. 2013

  6. non-resonant ionization excitation of auto-ionizing states ionization of Rydberg-states extraction field or collisional ionization ionization potential higherexcitedstates firstexcitedstate E1 energy groundstate 0 eV E0 Principles of laser ionization ~6 eV (5-9 eV) sI ~ 10-17 cm2 sI ~ 10-15 cm2 sR ~ 10-12 cm2 Z Efficiency× Selectivity N I.D. Moore, 1st Topical Workshop on Laser-BasedParticleSources, Feb. 2013

  7. JYFL: a high-repetition rate laser system • repetition rate:~10 kHz • tuning range: • - fundamental 700 - 1000 nm - frequency doubled350 - 500 nm • - frequency tripled 240 – 330 nm • - frequency quad. 205 - 250 nm • laser linewidth:>5 GHz (broad) • <1 GHz (narrow) TalkbyVolker, 11:20 I.D. Moore, 1st Topical Workshop on Laser-BasedParticleSources, Feb. 2013

  8. from K=130 MeV cyclotron IGISOL-4: 2012 - https://www.jyu.fi/fysiikka/en/research/accelerator/igisol Off-lineionsources: (discharge, carboncluster…) K=30 MeV cyclotron Laser transport foroptical manipulation Laser ionizationin-source/in-jet Collinear laser spectroscopy Decayspectroscopy Massspectrometry & post-trapspectroscopy IGISOL – secondfloor I.D. Moore, 1st Topical Workshop on Laser-BasedParticleSources, Feb. 2013

  9. In-gas-cell laser ion source Ar/He from gas purifier Laser beams Longitudinal • Separation of stopping and laser ionization volume improves: • Laser ionization efficiency at high cyclotron beam current • Increasing selectivity (collection of non-neutral ions) Beam from Cyclotron Target Laser Ionization chamber Ionization chamber Ion Collector Ion collector Filament Exit hole Ø 0.5 – 1 mm TalkbyYuri, Thurs. 15:50 SPIG Yu. Kudryavtsev et al., NIM B 267 (2009) 2908 I.D. Moore, 1st Topical Workshop on Laser-BasedParticleSources, Feb. 2013

  10. General introduction to RIB production • Probing the gas jet • In-jet laser ionization • Outlook I.D. Moore, 1st Topical Workshop on Laser-BasedParticleSources, Feb. 2013

  11. Why do we wish to use the gas jet? …a quest for PUREradioactiveionbeams → (the Laser IonSource ``Trap´´) I.D. Moore et al., AIP Conf. Proc. 831 (2006) 511 Hot cavity LIST (talkby S. Richter, Fri. 10:40) F. Schwellnus et al., Rev. Sci. Instrum. 81 (2010) 02A515 I.D. Moore, 1st Topical Workshop on Laser-BasedParticleSources, Feb. 2013

  12. Improvements in resolution The effect of temperature and pressure on the FWHM Hot cavity (ISOLDE) Dopplerbroadening (2000 - 2500 K) Pressurebroadening Gascell (LISOL/JYFL) (300 K) Laser resolution 1.8 GHz T. Sonoda et al., NIMB 267(2009) 2918 I.D. Moore, 1st Topical Workshop on Laser-BasedParticleSources, Feb. 2013

  13. What challenges do we face? • Time overlapbetweenfastatoms and laser pulses Velocitydistribution laser ionguide (JYFL) Reference cell T. Kessler, PhDthesis (JYFL) Velocitydistribution of jet (CFD simulations) He 200 mbar Gas cell 0 m/s 1500 m/s Courtesy of J. Kurpeta (Warsaw) 7 GHzblueshift = 1660 m/s jet Gas jet T. Sonoda et al., NIMB 267(2009) 2918 I.D. Moore, 1st Topical Workshop on Laser-BasedParticleSources, Feb. 2013

  14. Solution: a high-repetition rate laser system SPIG Vdc = +40 V 59Cu (T1/2=81.5 s) On-linereaction: 58Ni(3He-25 MeV,np)59Cu In-jetproduction~60× < in-gascellproduction R. Ferrer-García, V. Sonnenschein et al., NIM B 291 (2012) 29 I.D. Moore, 1st Topical Workshop on Laser-BasedParticleSources, Feb. 2013

  15. Second challenge: laser-atom spatial overlap Properties of the gas jet depends on nozzleshape and pressureboundaries Planarlaser-inducedfluorescence Numericalinvestigation of jet flows NASA Technical Reports Server, Record 59, J.A. Inman et al., (2008) M. Jugroot et al., J. Phys. D 37 (2004) 1289 I.D. Moore, 1st Topical Workshop on Laser-BasedParticleSources, Feb. 2013

  16. 32 mm Imaging gas jets at JYFL • Create a gasdischarge • Photograph the expanding jet • Vary backgroundpressure • Vary nozzletype • Modelrfsextupole • Analyse the jets ~700 V converging-diverging exithole perspex SPIG de Lavalnozzle I.D. Moore, 1st Topical Workshop on Laser-BasedParticleSources, Feb. 2013

  17. From image to analysis Variations in backgroundpressure • ~1 mbar is suitable for jet • acceptance into rfdevice • Notsuitableconditions • dueto discharge φspig = 6 mm I.D. Moore, 1st Topical Workshop on Laser-BasedParticleSources, Feb. 2013

  18. Probing the jet from a de Laval nozzle Images and directpressuremeasurements PAr = 250 mbar PAr = 300 mbar • With the Machnumberwecanalsodetermine: • jet temperature • jet density M. Reponen, I.D. Moore, I. Pohjalainen et al., NIMA 635 (2011) 24 I.D. Moore, 1st Topical Workshop on Laser-BasedParticleSources, Feb. 2013

  19. General introduction to RIB production • Probing the gas jet • In-jet laser ionization • Outlook I.D. Moore, 1st Topical Workshop on Laser-BasedParticleSources, Feb. 2013

  20. Laser spectroscopy of Ni: gas cell vs. gas jet Reference cell Gas cell He 50 mbar ~5 GHz Gas jet • 5 GHzblueDopplershift;~1130 m/s jet velocity • Laser linewidthdominant (~9 GHz at 232 nm) M. Reponen, I.D. Moore et al., EPJ A 48 (2012) 45 I.D. Moore, 1st Topical Workshop on Laser-BasedParticleSources, Feb. 2013

  21. A stepwise improvement in laser linewidth • Addition of a secondetalon into the Ti:sapphirecavity Thick etalon undoped YAG d = 6 mm R = 8% Thin etalon coated substrate d = 0.3mm R ≈ 40% Birefringent filter Ref. cell FWHM = 6.6 GHz FWHM = 2.0 GHz (Talkby T. Kron, Thurs. 17:10) I.D. Moore, 1st Topical Workshop on Laser-BasedParticleSources, Feb. 2013

  22. LARISSA Spectroscopy of 63Cu (LISOL 2011) Reference cell COG FWHM = 2.9(2)GHz Ionsignal (a.u.) PAr= 150 mbar Gas cell FWHM = 4.3(2)GHz Gas jet FWHM = 3.2(2)GHz CoG = 2.5(2)GHz n – 1227.45887 (THz) Vjet ~600 m/s R. Ferrer, V. Sonnenschein et al., NIMB 291 (2012) 29 I.D. Moore, 1st Topical Workshop on Laser-BasedParticleSources, Feb. 2013

  23. First free jet ions in LIST geometry at JYFL (65Cu, Nov. 2012) 2nd step 1st step Isat = 17 mW/cm2 Isat = 119 mW/cm2 3rd step, Isat~3.2 W/cm2 I.D. Moore, 1st Topical Workshop on Laser-BasedParticleSources, Feb. 2013

  24. Following computer control and power stabilization FWHM = 2.0(1) GHz FWHM = 1.8(2) GHz FWHM = 3.6(2) GHz Vjet ~800 m/s FWHM = 6.7(3) GHz CoG = -2.5(3) GHz FWHM = 3.0(2) GHz Vjet ~1040 m/s FWHM = 3.9(2) GHz CoG = -3.2(1) GHz I.D. Moore, 1st Topical Workshop on Laser-BasedParticleSources, Feb. 2013

  25. Free jet laser spectroscopy of Cu at LISOL Towardsextraction RFQ • Modifyfrontend of separator • Install a 90° bent RFQ • Supersonicfreegas jet • Use of narrowband laser for first • excitationstep (pulsedamplified • CW diode laser) • Spectralbandwidthonly 88 MHz 90° bent RFQ Gascell L1 L2 Shapedrodsegments Gascellchamber 90° bent RFQ Extraction electrode Gascell Extraction RFQ Ar 200 mbar L1 Towardsmass separator L2 Cufilament Free jet expansion I.D. Moore, 1st Topical Workshop on Laser-BasedParticleSources, Feb. 2013

  26. Results: gas jet vs. referencecell • Measured HFS of 995(30) MHz • agrees with literature: • 1013.2(20) MHz • Dopplershift of 1830(30) MHz; • gas jet velocity of 599(10) m/s • FWHM = 450 MHz (gas jet) • = 300 MHz (ref. cell) • The gas jet divergence is the limitingfactor for • high-resolutionspectroscopy in the free jet • Improvebyusingbettercollimatedjets (Laval) Yu. Kudryavtsev et al., NIMB 297 (2013) 7 I.D. Moore, 1st Topical Workshop on Laser-BasedParticleSources, Feb. 2013

  27. Proposedsetup for gas jet spectroscopy at RIKEN Vertical injection The PArasiticRI-beamproductionbyLaser Ion-Source (PALIS) project Mirror Gas-jet Counter injection Dye laser pumped by Nd:YAG laser (rep. rate 10 kHz) free jet or jet through designed nozzle 2nd step laser Multi-reflection Mirror Ar gas inlet 1st step laser Injection locked Ti:Sapphire laser pumped by Nd:YAG laser (rep. rate 10 kHz) MS & ion detection Filament atom source / RI beam Optical frequency combs Gas cell (high pressure) Ionization cell (low pressure) Prototype version: T. Sonoda, M. Wada et al., NIMB 295 (2013) 1 I.D. Moore, 1st Topical Workshop on Laser-BasedParticleSources, Feb. 2013

  28. Demonstration: Nbspectroscopyusinggas jet RIS FWHM = 10.4(4) GHz, vacuum = 11.3(1) GHzgas jet 93Nb T. Takatsuka, H. Tomita et al, submitted to Hyp. Int. (2013) I.D. Moore, 1st Topical Workshop on Laser-BasedParticleSources, Feb. 2013

  29. General introduction to RIB production • Probing the gas jet • In-jet laser ionization • Outlook I.D. Moore, 1st Topical Workshop on Laser-BasedParticleSources, Feb. 2013

  30. An injection-locked pulsed Ti:sapphire laser system • Mark 1 (Mainz): ~20 MHz, >1.5 W • Mark 2 (Nagoya, Japan) • Mark 3 (JYFL, Finland) • - cwMatisse laser ordered with pump • - ringcavitybeingdeveloped • - TEM lockingelectronicsbought 27Al Pulsednarrow bandwidth output toexperiments CWTi:sa input Feedback to lockingunit Nd:YAG pump laser (10kHz) T. Kessler et al., Laser Phys. 18 (2008) 842 I.D. Moore, 1st Topical Workshop on Laser-BasedParticleSources, Feb. 2013

  31. Towards the future… • Continuation of jet studies with laser ionization (nozzlesetc) • Spectroscopy of exoticnuclei in the jet with injection-lockedlasers In-gas-cell and in-gas-jet laser ionization at S3facility, SPIRAL-2, GANIL I.D. Moore, 1st Topical Workshop on Laser-BasedParticleSources, Feb. 2013

  32. Mikael Reponen, VolkerSonnenschein, Ilkka Pohjalainen Tobias Kron, Klaus Wendt YuriKudryavtsev HidekiTomita Thankyou

  33. Dual-chamber gas cell commissioning (2012) 36Ar(natZn,pxn)101-97Ag Ar/He from gas purifier Laser beams Longitudinal Beam from Cyclotron Target Ionization chamber 11% 2% Ion Collector 17% Exit hole Ø 0.5 – 1 mm 223Ra α-recoilsource efficiencies SPIG M. Reponen, PhDthesis, JYFL (2012) 36Ar beamintensity (pμA) Yu. Kudryavtsev et al., NIM B 267 (2009) 2908

  34. Reference cell FWHM= ~ 3 GHz He 200 mbar Gas cell FWHM= ~ 6 GHz Gas jet FWHM= ~ 4 GHz Laser spectroscopy of Ni: gas cell vs. gas jet T. Sonodaet al., NIMB 267(2009) 2918 Gas cell 7 GHz No sensitivity to nuclear structurehowever

More Related