1 / 23

Basic Calculation for K-DEMO Divertor Design

Basic Calculation for K-DEMO Divertor Design. June 26, 2013. Kihak IM. PPPL-NFRI Meeting, June 26-28, 2013, at PPPL. Procedures to take for Divertor Design. K-DEMO Divertor Concept Definition/Design Procedure. Total Plasma Power, Power Loss Tree, SOL , flux expansion …,

morgan
Download Presentation

Basic Calculation for K-DEMO Divertor Design

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Basic Calculation for K-DEMO Divertor Design June 26, 2013 Kihak IM PPPL-NFRI Meeting, June 26-28, 2013, at PPPL

  2. Procedures to take for Divertor Design

  3. K-DEMO Divertor Concept Definition/Design Procedure • Total Plasma Power, • Power Loss Tree, • SOL , flux expansion …, • Cooling, … • Geometric availability • Establishment of • Divertor main design parameters Plasma Equilibrium Assume DivertorLocation & Shapes Calculation on Heatflux, Particle Flux … (Modeling / Extrapolation ?) ? Heat Transfer / Structural Analyses - Material Assumption(W + Cu tube?) Estimate Plasma-Material Interaction (Erosion, Tritium Retention, …) Documentation on Divertor CSR

  4. K-DEMO Divertor Concept Definition/Design Procedure • Total Plasma Power, • Power Loss Tree, • SOL , flux expansion …, • Cooling, … • Geometric availability • Establishment of • Divertor main design parameters Plasma Equilibrium (edge) Assume DivertorLocation & Shapes Calculation on Heatflux, Particle Flux … (Modeling / Extrapolation ?) ? Heat Transfer / Structural Analyses - Material Assumption(W + Cu tube?) Estimate Plasma-Material Interaction (Erosion, Tritium Retention, …) Documentation on Divertor CSR

  5. K-DEMO Divertor Concept Definition/Design Procedure • Total Plasma Power, • Power Loss Tree, • SOL , flux expansion …, • Cooling, … • Geometric availability • Establishment of • Divertor main design parameters Plasma Equilibrium Assume Divertor Location & Shapes Calculation on Heatflux, Particle Flux … (Modeling / Extrapolation ?) ? Heat Transfer / Structural Analyses - Material Assumption(W + Cu tube?) Estimate Plasma-Material Interaction (Erosion, Tritium Retention, …) Documentation on Divertor CSR

  6. K-DEMO Divertor Concept Definition/Design Procedure • Total Plasma Power, • Power Loss Tree, • SOL , flux expansion …, • Cooling, … • Geometric availability • Establishment of • Divertor main design parameters Plasma Equilibrium Assume DivertorLocation & Shapes Calculation on Heatflux, Particle Flux … (Modeling / Extrapolation ?) ? • Detached Plasma Concept? Heat Transfer / Structural Analyses - Material Assumption(W + Cu tube?) Estimate Plasma-Material Interaction (Erosion, Tritium Retention, …) Documentation on Divertor CSR

  7. K-DEMO Divertor Concept Definition/Design Procedure • Total Plasma Power, • Power Loss Tree, • SOL , flux expansion …, • Cooling, … • Geometric availability • Establishment of • Divertor main design parameters Plasma Equilibrium Assume DivertorLocation & Shapes Calculation on Heatflux, Particle Flux … (Modeling / Extrapolation ?) ? Heat Transfer / Structural Analyses - Material Assumption(W + Cu tube?) Estimate Plasma-Material Interaction (Erosion, Tritium Retention, …) Documentation on Divertor CSR

  8. K-DEMO Divertor Concept Definition/Design Procedure • Total Plasma Power, • Power Loss Tree, • SOL , flux expansion …, • Cooling, … • Geometric availability • Establishment of • Divertor main design parameters Plasma Equilibrium Assume DivertorLocation & Shapes Calculation on Heatflux, Particle Flux … (Modeling / Extrapolation ?) ? Heat Transfer / Structural Analyses - Material Assumption(W + Cu tube?) Estimate Plasma-Material Interaction (Erosion, Tritium Retention, …) Documentation on Divertor CSR

  9. K-DEMO Divertor Concept Definition/Design Procedure • Establishment of • Divertor main design parameters • Total Plasma Power, • Power Loss Tree, • SOL  … Plasma Equilibrium Assume DivertorLocation & Shapes • K-DEMO CSR • 1. Overview of K-DEMO • 1.1 … • 1.2 … • … • 3. K-DEMO Tokamak System • …… • 3.4 Divertor • …… • …… Calculation on Heatflux, Particle Flux … (Modeling / Extrapolation ?) ? Heat Transfer / Structural Analyses - Material Assumption(W + Cu tube?) Estimate Plasma-Material Interaction (Erosion, Tritium Retention, …) Documentation on Divertor CSR

  10. Calculations made so far

  11. 1. Power Loss Tree Blanket cooling limit Divertorcooling limit K-DEMO Plasma Power =600 MW Numbers not decided yet

  12. 2. Parameter Scope Analysis for Divertor Design(1) SOL power e-foldinglength at midplane * S.C. Jardinet al., Fusion Engineering and Design 80 (2006) 25-62 x (TENTATIVE) (TENTATIVE) q” = - kFMS  (25 W/mk)  0.5 MW/m2

  13. Power decay length, q

  14. 2. Parameter Scope Analysis for Divertor Design(2-1) • To reduce Q_div_peak(1/2) • Core radiation fraction • Inboard/outboard ratio (1/8) •  (= e-foldinglength) • Target tilting angle ( )- area • Flux expansion factor • Divertor Radiation ratio ☜ Blanket cooling limit ☜ Plasma transport ☜ Plasma behavior/physics Space limitation to locate Divertor Target

  15. 2. Parameter Scope Analysis for Divertor Design(2-2) • To reduce Q_div_peak(2/2) • Core radiation fraction • Inboard/outboard ratio (1/8) •  (= e-foldinglength) • Target tilting angle ( )- area • Flux expansion factor • Divertor Radiation ratio ☜ Space limitation ☜ Space limitation ☜ Plasma behavior/physics Possible design space for divertor design Reasonable ?! • = 2.5 mm  div_rad ~90% • angle ~13o • = 5 mm  div_rad ~75% • angle ~20o

  16. 2. Parameter Scope Analysis for Divertor Design(3) • To radiate 300 MW out of 600 MW at core plasma (fcore_rad = 50%): • Ar = 1.5% (Zeff ~ 6) • Kr = 0.25% (Zeff~ 4.6) • Neon, Argon  too much fuel dilution ~ 7 times comparing with ARIES-AT as K-DEMO: low density (<ne> ~ 1020/m3) while ARIES-AT <ne> ~ 2.15 x 1020/m3 0.25% 1.5%

  17. 2. Parameter Scope Analysis for Divertor Design(3) • D, T Radiation • Impurity Radiation : • from D.E. Post et al., “Steady-state Radiative Cooling of • Low Density, High Temperature Plasmas,” • Atomic Data and Nuclear Data Tables 20, 397-439 (1977) Pbrems = 5.35 X 10-37 Z2 neni Psync= 6.18 X 10-17 B2neTe

  18. 3. Equilibrium & Blanket/Divertor Radiation Heatload (1) • Plasma equilibrium shape by Chuck was used to get fieldline • for preliminary radiation heatload on divertor and blanket FW

  19. 3. Equilibrium & Blanket/Divertor Radiation Heatload (2) • Segmentation of core plasma • for radiation heatload calculation • ARIES-AT MISTRAL Analysis • for impurity transport •  Core radiation radial Profile Uniform radiation along leg X-point rad. ~ 10% S.C. Jardinet al., Fusion Engineering and Design 80 (2006) 25-62 Power Loss Tree to give the regional radiation power distribution

  20. 3. Equilibrium & Blanket/Divertor Radiation Heatload (3) • Input to Blanket thermo-hydraulic analysis •  to determine the max. allowable heatload

  21. 4. Preliminary Blanket Thermo-hydraulic Analysis • Blanket TH analysis model schematic view • Radiation heat + Internal Heat by neutron Outlet Temp. 1.5 m long Blanket module A A A 780 C He, 300 C, 8 MPa, 40 m/s Inlet Temp. B B B  0.45 MW/m2 • Radiation heat ONLY FM Steel < 550 C • Radiation heat load on Blanket FW 570 C • Further TH analyses are on-going to reduce blanket structure temperature • to decide the max. allowable radiation heatload on Blanket FW • With varying channel and wall dimensions • With update of neutronicsanalysis

  22. Next Steps …. Various plasma equilibrium calculation with possible divertor geometry in given geometry boundary  to locate the divertor targets … Conventional? ? Advanced ? M. Rieth, KIT, IAM-AWP, “Power Plant Divertor Design Options & Materials”, NFRI/KIT Cooperation Meeting, February 14-15, 2013 A.S. Kukushkin et al., Nucl. Fusion 49 (2009) 075008

  23. Thankyou for your attentions…

More Related