210 likes | 341 Views
How Massive are the First Stars? Statistical Study of the primordial star formation M popIII. Variety of PopIII protostellar evolution 3 protostellar accretion paths M popIII = 10 – a few 100 M sun. ○ Shingo Hirano 1
E N D
How Massive are the First Stars? • Statistical Study of the primordial • star formation MpopIII Variety of PopIIIprotostellar evolution 3 protostellar accretion paths MpopIII = 10 – a few 100 Msun • ○ Shingo Hirano1 • Takashi Hosokawa1, Naoki Yoshida1, Kazuyuki Omukai2, H.W.Yorke3 • 1University of Tokyo, 2University of Kyoto,3JPL/Caltech • ALMA時代の宇宙の構造形成理論@北海道大学 / Jan. 26-28, 2013
How Massive are the First Stars? z =17 600kpc/h (comving) Accretion Phase of the Primordial Protostar Primordial Halo Cosmological Simulation Protostar Core ( ~ 0.01 [Msun] ) ZERO metallicity ■Different thermal evolution (main coolant is H2 molecular) Mcloud ~ 1000 [Msun] MpopIII ~ 1000 [Msun] (?) ■No Metal & Dust No radiation pressure (?) (cf, PopII, I star formation) UV Radiative Feedback Stalls mass-accretion
UV Radiative Feedback • Ultraviolet (UV; hν > 13.6 [eV]) radiation from the protostar • Ionizing infalling neutral gas & creating HII region • Thermal pressure of the ionized region (high temperature) • is much greater than that in neutral gas of the same density McKee & Tan (2008) Accreting star emits the ionizing UV photons Growth of HII region Breakout & Expansion Gas on the circumstellar disk is photo-ionized & heated photo-evaporation
Accretion History of Protostar Protostar Evolution UV radiative feedback Mass Accretion Radiative Hydrodynamics (RHD) Hosokawa et al. (2011) MpopIII = 43 [Msun] moderate massive … however, MpopIII depend on the initial quantities : Primordial Star–Forming Cloud Accretion Rate [Msun/yrs] Can be calculated by Cosmological Simulations Mstar[Msun]
Aim & Method Determining the initial mass distribution of the PopIII stars (massive side; in case of the single-star formation) ■Cosmological Simulation primordial star-forming halos ■RHD + Stellar Evolution accretion histories Cosmological Simulation Primordial Gas Clouds MpopIII Distribution Accretion Histories
7 Cosmological Simulation
Cosmological Simulation GADGET-2 : parallel SPH+N-body code (Springel 2005) + Primordial Chemistry (Yoshida et al. 2006, 2007) Initial Condition :zini = 99, WMAP-7 (Komatsu et al. 2011) + zoom-in re-simulation technique Mresolve, init < 500 [Msun] < Mcloud Stop calculations when the collapsing center becomes : ncen~ 1013 [cm-3] (Lresolve ~ 10-5 ー10-4 [pc] ~ 2 ー20 [AU])
Primordial Star-Forming Clouds 108 halos @ Ncen~ 1012 [cm-3] Gao et al. (2007) NH[cm-3] R [pc] Density profiles evolve self-similarly
Infall Rate of Collapsing Cloud Characteristic quantities of clouds : Infall Rate[Msun/yrs] = NH[cm-3] Infall Rate [Msun/yrs] Vrad[km/sec] ~ 10-3 – 10-1 Menclosed[Msun] Menclosed[Msun]
Protostellar Accretion Using the setting & method in Hosokawa et al. (2011) Protostar Evolution UV radiative feedback Mass Accretion Radiative Hydrodynamics (RHD) ■2D-axsymmetric ■Self-gravity, Hydro ■Primordial Chemistry (15 reactions with H, H+, H2, H-, e) ■Radiative-transfer : cooling, feedback ■Lcell,min ~ 25 [AU], Lbox = 1.2 [pc], Mtotal ~ few 1000 [Msun] * For calculating the case of the high mass accretion rate, we adopt a simple model of the stellar evolution
“Super-Giant” Protostar Hosokawa et al. (2012) Rstar[Rsun] Infall Rate [Msun/yrs] Mstar[Msun] Menclosed[Msun] dM/dt > 0.04 [Msun/yrs] No KH contraction (“Super-Giant” Protostar ) dM/dt > 0.004 [Msun/yrs] Ltot(M)|ZAMS > Ledd, cannot reach ZAMS
Model of “Rebound” Phase Hosokawa et al. (2012) Ltot ~ Ledd Scaling : Rstar // RZAMS Lstar // LZAMS ① ② Rstar[Rsun] 2 dM/dt < 4E–3 [Msun/yrs] Contraction to ZAMS (KH timescale) 1 Mstar[Msun] * Ignore expansion phenomena By expansion, the effective temperature, Teff, decreases this phase is not important for the UV radiative feedback
Accretion History : one sample ZAMS Mass Accretion KH Contraction ZAMS
Accretion Histories 104 10-1 103 10-2 Accretion Rate [Msun/yrs] Rstar[Rsun] 102 10-3 101 10-4 100 1 10 100 1000 1 10 100 1000 Mstar[Msun] Mstar[Msun] Super-Giant / Rebound / Fiducial Three paths exist
Effective Temperature 105 104 5000 [K] Teff[K] × UV Radiation 103 102 1 10 100 1000 Mstar[Msun]
Accretion History onto Protostar 11 / 108 … “Super-Giant” Phase 36 / 108 … “Rebound” Phase 61 / 108 … Become ZAMS dM/dt > 0.04 [Msun/yrs] • KH contraction stage • disappears entirely Hosokawa et al. (2012) 10-1 dM/dt > 0.004 [Msun/yrs] 10-2 Accretion Rate [Msun/yrs] Star cannot become the Zero-Age Main-Sequence (ZAMS) structure 10-3 Omukai&Palla (2003) dM/dt < 0.004 [Msun/yrs] 10-4 1 10 100 1000 KH contraction & ZAMS directly Mstar[Msun]
Initial infall rate v.s Final MpopIII Good Correlation : (4πR2ρvrad)Jeans MpopIII MpopIII[Msun] Simple Estimation : MpopIII ∝ (4πR2ρvrad)Jeans Decide MpopIII without the calculation of accretion history (* Not consider fragmentation) (4πR2ρvrad)Jeans[Msun/yrs]
MpopIIIDistribution Heger & Woosley’02 Final fate of the non-rotatingPopIIIstars ■15 < MPopIII < 40 Core Collapse SNe ■40 < MPopIII < 140 Black Hole ■140 < MPopIII < 260 Pair-Instability SNe ■260 < MPopIII Black Hole * with rapid rotation MPISN > 65 [Msun] Chatzopoulos&Wheeler(2012) Count 32 36 18 21 MpopIII[Msun]
Summary 104 ■more than 100 primordial halos show the wide range of accretion history ■Three type of accretion histories (1)low dM/dt KH contraction UV radiative feedback (2)High dM/dt cannot reach ZAMS mass accretion continues (3)HUGEdM/dt “supergiant” protostar mass accretion continues MpopIII = 10 – a few 100 [Msun] □ Correlation between (4πR2ρvrad)Jeans – MpopIII Can estimate MpopIII by using Jeans quantity 103 Rstar[Rsun] 102 101 100 1 10 100 1000 Mstar[Msun] MpopIII[Msun] (4πR2ρvrad)Jeans[Msun/yrs]