270 likes | 362 Views
Topologically Encoded Animation (TEA): History & Future. T. J. Peters Kerner Graphics. KnotPlot: www.knotplot.com Unknot or Trefoil? Demo A: Unknown1 & Unknown2. Contemporary Computational Influences. Edelsbrunner: geometry & topology Sethian: Marching methods, topology changes
E N D
Topologically Encoded Animation (TEA): History & Future T. J. Peters Kerner Graphics
KnotPlot: www.knotplot.com Unknot or Trefoil? Demo A: Unknown1 & Unknown2
Contemporary Computational Influences • Edelsbrunner: geometry & topology • Sethian: Marching methods, topology changes • Blackmore: differential sweeps • Carlsson, Zomordian : Algebraic
Route to KG May discussion with Norm. NSF SBIR grant for TEA technology.
Digital Visual Effects (DVFX) “Plus, we love to blow things up.” Little reuse or modification
Challenges --- (Audacious?) Another: Inner Life of a Cell – XVIVO for Harvard
TEA: dimension-independent technology • Provably correct temporal antialiasing • Portability of animation to differing displays • Efficient compression and decompression
My Scientific Emphasis Mappings and Equivalences Knots and self-intersections Piecewise Linear (PL) Approximation
1.682 Megs 1.682 Megs
Moore Dissertation 2006 Efficient algorithm for ambient isotopic PL approximation for Bezier curves of degree 3.
Bad Approximation! Self-intersect?
Good Approximation! Respects Embedding: Curvature (local) & Separation (global) Error bounds!! => Nbhd_2 about curve. But recognizing unknot in NP (Hass, L, P, 1998)!!
Temporal Antialiasing Comparison • Time to market. • Produce traditionally. • Produce with TEA technology.
Portability for Display • Ipod to Big Screen by parameters. • 3D TV. (Prototype shown today.)
Compression: TEA File (<1KB vs 1.7 Megs) Bezier degree = 3, with Control points 0.0 0.0 0.0 4.293 4.441 0.0 8.777 5.123 1.234 12.5 0.0 0.0 Perturbation vectors; constraint on each vector 1 24.1 0.0 0.0 ; 26.4 1 -12.5 0.0 5.0 ; 18.1 2 -2.1 -2.4 -3.1 ; 9.0 1 -11.6 0.0 -1.9 ; 14.0
Compression vs Decompression • Compression, Phase I. • Decompression, Phase II.
Conclusions • Time can be modeled continuously while frames remain discrete. • Difference between • Perturb then approximate versus • Approximate then perturb.
Quotes & Interpretation • “You can’t rush art.”, Woody, Toy Story 2 • “Time is money”. • Correct math for the most money.
Modeling Time and Topology for Animation and Visualization, [JMMPR], pre-print • Computation Topology Workshop, Summer Topology Conference, July 14, ‘05, Special Issue of Applied General Topology, 2007 • Open Problems in Topology II, 2007 • NSF, Emerging Trends in Computational Topology, 1999, xxx.lanl.gov/abs/cs/9909001 Overview References
Acknowledgements: NSF • SBIR: TEA, IIP -0810023. • SGER: Computational Topology for Surface Reconstruction, CCR - 0226504. • Computational Topology for Surface Approximation, FMM - 0429477. • Investigator’s responsibility, not NSF.
Acknowledgements: Images • http://se.inf.ethz.ch/people/leitner/erl\_g/ • www.bangor.ac.uk/cpm/sculmath/movimm.htm • www.knotplot.com • blog.liverpoolmuseums.org.uk/graphics/lottie_sleigh.jpg • www.channel4.com/film/media/images/Channel4/film/B/beowulf_xl_01--film-A.jpg • www.turbosquid.com