1 / 4

Station

Example: a radio station on the surface of the earth radiates a sinusoidal wave with an average total power of 50 kW.* Assuming the wave is radiated equally in all directions above the ground, find the amplitude of the electric and magnetic fields detected by a satellite 100 km from the antenna.

morinr
Download Presentation

Station

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Example: a radio station on the surface of the earth radiates a sinusoidal wave with an average total power of 50 kW.* Assuming the wave is radiated equally in all directions above the ground, find the amplitude of the electric and magnetic fields detected by a satellite 100 km from the antenna. Strategy: we want Emax, Bmax. We are given average power. From average power we can calculate intensity, and from intensity we can calculate Emax and Bmax. Satellite From the average power we can calculate intensity, and from intensity we can calculate Emax and Bmax. Station *In problems like this you need to ask whether the power is radiated into all space or into just part of space.

  2. Example: a radio station on the surface of the earth radiates a sinusoidal wave with an average total power of 50 kW.* Assuming the wave is radiated equally in all directions above the ground, find the amplitude of the electric and magnetic fields detected by a satellite 100 km from the antenna. Area=4R2/2 All the radiated power passes through the hemispherical surface* so the average power per unit area (the intensity) is All the radiated power passes through the hemispherical surface* so the average power per unit area (the intensity) is Satellite R Station Today’s lecture is brought to you by the letter P. *In problems like this you need to ask whether the power is radiated into all space or into just part of space.

  3. Satellite R Station You could get Bmax from I = c Bmax2/20, but that’s a lot more work

  4. Example: for the radio station in the example on the previous two slides, calculate the average energy densities associated with the electric and magnetic field. If you are smart, you will write <uB> = <uE> = 1.33x10-15 J/m3 and be done with it.

More Related