460 likes | 573 Views
Cosmology in superfluid 3 He. Yuriy M. Bunkov. C R T B T – C N R S, Grenoble, France. Vc. Ef. Pf. Fermi liquid. E. P. Zurek scenario. Superfluid 3 He bolometry. L. S. R(n Q ). R(n Q ). H. H. d. L. S. k. Order parameter He-B. 3. PS. Coherent, Magnetically Excited States.
E N D
Cosmology in superfluid 3He Yuriy M. Bunkov C R T B T – C N R S, Grenoble, France
Vc Ef Pf Fermi liquid E P
L S R(nQ) R(nQ) H H d L S k Order parameter He-B 3
PS Coherent, Magnetically Excited States Grenoble, 1999 Domain with Homogeneous Precession of Magnetization, 1984 HPD A.S.Borovik-Romanov, Yu.M.Bunkov, V.V.Dmitriev, Yu.M.Mukharskiy, JETP Letters v.40, p.1033, (1984). Sov.Phys.JETPh, v.61, p.1199, (1985). I.A.Fomin, JETP Letters v.40, p.1036, (1984). Catastropha Catastrophic relaxation Yu.M.Bunkov, V.V.Dmitriev, Yu.M.Mukharskiy, J.Nyeki, D.A.Sergatskov, Europhysics Letters, v.8, p.645, (1989). PS
2. Coherenent State, which radiates the Persistent signal Lancaster Discovery, Lancaster, 1992 Yu.M.Bunkov, S.N.Fisher, A.M.Guenault, G.R.Pickett, Phys, Rev, Letters, v.69, p3092, (1992). Moscow Moscowresults Yu.M.Bunkov, S.N.Fisher, A.M.Guenault, G.R.Pickett, S.R.Zakazov, Physica B, v. 194, p. 827, (1994). ``Coherent Spin Precession and Texture in 3He-B.'' Yu.M. Bunkov, LT-21, Czechoslovak Journal of Phys. V. 46, S1, p. 231 (1996). Lancaster experimental conformation Yu.M. Bunkov, D.J. Cousins, M.P.Enrico, S.N.Fisher, G.R.Pickett, N.S.Shaw, W.Tych, LT-21, Czechoslovak Journal of Phys. V. 46, S1, p. 233 (1996).
In 3He-B In relativistic field theory Q (r) = S - Sz(r) d3x[i(f*dtf - fdtf* )] Q = S+ (r) = S (r) e iwt f (r t) = exp(- imt) f (r) dEd dSz = Dw = gHdd(S,L) E(m) = d3x[ I fI2-mIfI2+ U(IfI)] D Q-ball - Spherically symmetric non-topological soliton with conserved global charge Q Proposed by S.Colleman (1985) in frame of relativistic field theory as a semi-classical model of elementary particles formation Current interest due to Q-balls dark matter model E(mQ)< SE(Q) m
S R(nQ) H L Sz In 3He-B 0 L R(nQ) H Q (r) = S - Sz(r) 1 S Lz S+ (r) = S (r) e iwt dEd dSz = Dw 1 = gHdd(S,L) 0 Ed 1
Spatial case Follow Voislav Golo algorithm (15 equations) S Yu.M.Bunkov, V.L.Golo, J Low Temp Phys, to be published L H + E grad + E surf
Angles of deflection, degree Position, 0.1 mm
Angles of deflection, degree Position, 0.1 mm
Angles of deflection, degree Position, 0.1 mm
Max NMR shift Larmore freq.
H 3D Q-ball S L
S L H Q ball on topological defect
H H Computer simulation Grenoble 2004 H Follow Voislav Golo algorithm Calculations of a spatial deflection of spin and orbit on basis of Poisson brackets and Takagi relaxation z LH Lz
Grenoble, 2004 Angles of deflection, degree Position, 0.1 mm
Grenoble, 2004 Angles of deflection, degree Position, 0.1 mm
S L H
Grenoble experiments with Non-linear Stationary Spin Waves A.-S. Chen, Yu.M. Bunkov, H. Godfrin, R. Schanen, F. Scheffer. J. Low Temp. Phys, 110, p. 51, (1998). 0.25 Tc
Non-linear Stationary Spin-waves – or Q ball, if you like! A.S. Chen,Yu. M. Bunkov, H. Godfrin, R. Schanen and F. Scheffler J. of Low Temp. Phys. 113, 693 (1998). Following Landau and Lifchitz we consider an anharmonic oscillator with a third order of nonlinearity
w=gH+Hz D H D H w=gH Quantum billiard Anne-Sophie CHEN, Ph D Thesis, Grenoble, (1999)
Grenoble, 1999 Off-resonante NMR excitation D.J.Cousins, S.N.Fisher, A.I.Gregory, G.R.Pickett, N.S.Shaw, Phys. Rev. Lett, 82, 4484, (1999) Anne-Sophie CHEN, Ph D Thesis, Grenoble, (1999) wrf wdd wQb wrf d p s
Grigori Volovik http://boojum.hut.fi/personnel/THEORY/volovik.html
L Non-linear Stationary Spin Waves in Flared out texture First observation of Spin Waves in Orbital Texture D.D.Osheroff, Physica B, 90, 20 (1977). NMR of Rotated superfluid 3He-B O.T.Ikkala, G.E.Volovik, P.Y.Hakonen, Yu.M.Bunkov, S.T.Islander, G.A.Haradze, JETP Letters v.35, p.416 (1982). Before rotation During rotation After rotation H AngleL-H