260 likes | 457 Views
Physics. Lake Michigan. Surface States and Edge Currents of Superfluid 3 He in Confined Geometries. James A. Sauls. DMR-0805277. Bose Condensation of Molecules vs. Cooper Pairs Chiral Edge States in Superfluid 3He-A Films Ground-State Angular Momentum of 3He-A
E N D
Physics Lake Michigan Surface States and Edge Currents ofSuperfluid 3He in Confined Geometries • James A. Sauls DMR-0805277 • Bose Condensation of Molecules vs. Cooper Pairs • Chiral Edge States in Superfluid 3He-A Films • Ground-State Angular Momentum of 3He-A • Temperature Dependence of Lz (T) • Sensitivity to Boundary Scattering and Topology M. Stone and R. Roy, Phys. Rev. B 69, 184511 (2004). T. Kita, J. Phys. Soc. Jpn. 67, 216 (1998). G. E. Volovik, JETP Lett 55, 368 (1992). J. A. Sauls, Phys. Rev. B 84, 214509 (2011)
Bulk Phase Diagram of Superfluid 3He A - phase (``axial’’) Anderson-Morel Nodal Quasiparticles Chiral Axis: Lz = ℏ B - phase (``isotropic’’) Balian-Werthamer Fully Gapped
Superfluid 3He-B Approximate particle-hole symmetry Weak Nuclear Dipole Energy Broken relative spin-orbit symmetry Generator violation: violation: G. Moores & JAS Transverse Sound Acoustic Faraday Effect Y. Lee et al. Nature 1999 Nuclear Spin Dynamics A. Leggett Possible SuperSolid Phase A.Vorontsov & JAS FS Fully Gapped, TRI Superfluid with Spontaneously generated Spin-Orbit Coupling • Balian & Werthamer (1963) Translational Invariance
Broken 2D parity Superfluid 3He-A (``Axial phase’’) • Anderson & Morel (1962) Chirality: Lz = ℏ Broken 2D Parity Broken T-Symmetry Broken time-reversal symmetry Ground state Orbital Angular Momentum Spin-Mass Vortices Lz=(N/2)ℏ (Δ/Ef)p p = 0,1,2 ? Chiral Fermions Broken relative gauge-orbit symmetry Broken relative spin-orbit symmetry Ans: Chiral Edge States and Edge Currents
Y.Nagato and K.Nagai, Physica B (2000). ? D Chiral Superfluids • A-phase of 3He Anderson & Morel (PR,1962) Orbital FM Spin AFM • Chiral Spin-Triplet Superconductivity UPt3 Sr2RuO4 hexagonal tetragonal strong spin-orbit coupling 6
Bose-Einsten Condensation Macroscopically Occupied Single Particle State One-Particle Density Matrix Long-Range Order Order Parameter ≝ Macroscopically Occupied State Superfluidity & Quantum Interference Thermodynamic State Function Penrose & Onsager Phys. Rev. 1956
Odd Parity, Spin Triplet (S=1): • Even Parity, Spin Singlet (S=0): Even Orbital Angular Momentum: Odd Orbital Angular Momentum: Order Parameter: ξ ξ≪ a • Tightly Bound Bose Molecules: Molecular BEC Macroscopically Occupied Two-Particle Wave Function • Cold Fermions with attractive interactions - e.g. 6Li, 40K ... • Molecular Wave Function • Internal Spin & Orbital Degrees of Freedom, e.g. s1=s2=½ Two-Particle Density Matrix
Triplet P-wave Condensates Singlet S-wave Condensates ``Scalar BEC’’ ``Chiral P-wave molecular BEC’’ ⟿ Angular Momentum Density Ground State Angular Momentum
ξ ξ ≫ a • Loosely Bound Cooper Pairs: Molecular BEC vs. BCS Pairing • Overlapping Pairs ⟿ Internal Exchange • Cancellation of Orbital Currents? ⟿
Fermi Sea Molecular BEC vs BCS Condensation • Momentum Space: Pair Correlations on the Fermi Shell # of pair-correlated Fermions • Angular Momentum Density in the BCS limit A. J. Leggett, RMP 1975, M. Cross JLTP 1975 & G. Volovik & V. Mineev JETP 1976 11
For any cylindrically symmetric chiral texture defined by and pair wave function that vanishes on the boundary: • Uniform State: z Angular Momentum Paradox • Integrated Angular Momentum Density in the BCS ... vs ...BEC limits ~10-6 A. Leggett RMP 1975 • Real Space Formulation in Cylindrical Geometries M. Ishikawa (1977) independent of (a /ξ)! • McClure-Takagi Theorem: M. McClure, S. Takagi, PRL (1979) • Mermin-Ho Texture: 12
McClure-Takagi gives the correct answer for Lz , but ... • Gradient Expansion for z BEC or BCS where are the currents? M. Ishikawa (1977) N. D. Mermin P. Muzikar PRB (1980) Amperean current Twist current Bulk Supercurrent Sheet Current Uniform Texture 13
BCS Pairing & the Quasiclassical Scale 2D A-phase/ 3D A-phase Film Fermi Sea • Angular Momentum Paradox • Theory of Inhomogeneous BCS States Loosely Bound Cooper Pairs: ξ ≫ a Inhomogeneous Edge: a ≪ ξ ≪ L
Coupled Fermions & Pairs Nambu spinors Gorkov’s Propagator Quasiclassical propagators Gorkov Equations à la Eilenberger Quasiparticle Spectral function Order parameter - pair spectrum
⟿ 2D Chiral A-phase with Bulk Solution Propagators for States Near an Edge Bound State Pole Bulk spectrum
Edge States Surface Confinement ... unoccupied a ≪ ≪ L Chiral Edge States occupied Weyl Fermion G. E. Volovik Pair of Time-Reversed Edge States Edge Current
in p’ p’ out _ α out in Local Spectral Density Pair Time-reversed Trajectories ⟿ Spectral Current Density x = 0.5 ξΔ
Number of Fermions: r z • Galilean Invariance: R x Bound-State Current & Angular Momentum Mass Current Continuum States determine Edge Currents M. Stone & R. Roy PRB 2006 JAS, PR B 84, 214509 (2011) ⨉ 2 Too Big vs. MT
C1 CR ξ C2 +iΔ -iΔ Continuum Spectral Current confined? T = 0 Resonance Effect Exactly Cancels Bound State Lz M-T !! Continuum Response to the Edge ⟿ McClure-Takagi Result
Finite Temperature C1 ⨯ CR ξ ⨯ C2 ⨯ ⨯ +iΔ T ≠ 0 Matsubara Representation Generalized Yosida Function for Lz Takafumi Kita’s ``conjecture’’ J. Phys. Soc. Jpn. 67 (1998) pp. 216-224 3D Mesoscale (R≃ 2ξ) Numerical BdG ? Yz(T) ≈ 1- c T2 ρs|| (T) ρs⊥(T) Lz(T) Lz(T) is ``soft’’ (2D or 3D) due to thermal excitation of Excited Edge States ρs|| (T) is ``soft’’ (3D) due to thermal excitation of Nodal QPs JAS, PR B 84, 214509 (2011) Tsutsumi & Machida,PR B 85, 100506(R) (2012)
Edge Currents in a Toroidal Geometry R1, R2, (R1 - R2) ⋙ξΔ x Sheet Current J2 J1 Volume Specular Edge Angular Momentum Counter-Propagating Currents !! MT Result
Robustness of the Chiral Edge States Specular Reflection out in Facetted Surface Chiral Edge States No Chiral Currents out p _ p in Retro Reflection Chirality Invisible! Tiny Angular Momentum !!
!! J2 J1 Non-Extensive Scaling of Lz Sheet Current - Non-Specular Edge Non-Specular Scattering R1, R2, (R1 - R2) ⋙ξΔ Fraction of Forward Scattering Trajectories Incomplete Screening of Counter-Propagating Currents Lz≉ V
Detecting Chiral Edge Currents • Gyroscopic Dynamics of Toroidal Disks of 3He-A • Engineered surfaces - differential Edge scattering <-> Edge Currents • Thermal Excitation of Edge States: • ≈ 1- c T2 • Toroidal Geometry & Non-specular Surfaces • ⇓ • Lz is Non-Extensive: • Lz > (N/2)ℏ or Lz < - (N/2)ℏ • ⇓ • Direct Evidence of Edge Currents Dissipationless Chiral Edge Currents Specular Edge Non-Specular Edge Equilibrium Angular Momentum J. Clow and J. Reppy, Phys. Rev. A 5, 424–438 (1972).
⟿ Direct Evidence of Edge Currents ⟿ Direct Evidence of Edge Currents Resumé • Ground-State Currents Confined to Edge on Scale ~ a ≪ ξ ≪ L • Edge Current Originates from Contiuum disturbed by the Surface Bound State • Lz = (N/2)ℏoriginates from Edge currents on Specular Boundaries • Kita Conjecture: Lz (T) ≅ (N/2)ℏ (ρs||(T)/ρ) is a accidental • Soft Temperature Dependence of Lz (T) due thermally excited Weyl Fermions • Edge Currents are Not Robust to Surface Scattering: Lz < (N/2)ℏ • Topology and Non-specular Scattering ⟿ Lz is Non-Extensive: • Lz >> (N/2)ℏ or Lz << - (N/2)ℏ