1 / 27

12 Basic Functions

12 Basic Functions. Hannah Kiiskila and Mitch Pronga. Introduction Video. http://www.youtube.com/watch?v=M87p94A1dL8. Intro. The 12 Basic Functions. Find the Domain . https://www.youtube.com/watch?v=2tC36VPxCmw. Finding the Domain of a Function Ex.

moya
Download Presentation

12 Basic Functions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 12 Basic Functions Hannah Kiiskila and Mitch Pronga

  2. Introduction Video • http://www.youtube.com/watch?v=M87p94A1dL8

  3. Intro

  4. The 12 Basic Functions

  5. Find the Domain https://www.youtube.com/watch?v=2tC36VPxCmw

  6. Finding the Domain of a Function Ex. • Y=X is the equation for the first basic function This is the table for the first basic function The domain would be (- , ) This is because all the values of Y Will give out a real X value

  7. Ex. 2 Y=[X] is the equation of this graph This is table for the second basic function. The domain would be (- , ) This is because all the values of Y Will give out a real X value

  8. Find the Range • https://www.youtube.com/watch?v=4kCHuVrtbc4

  9. Finding the Range of a Function Ex. • This is the graph of the function Y=x^2 • To find the range you need to look at the graph to see what values of y the graph reaches. • By looking at the graph, you should see that the graph reaches all positive values of y and 0, but not the negative values of y. • Because of this, the range for y=x^2 is [0, ), which shows that the graph will start at 0, and reach all positive values of y.

  10. Ex. 2 • This is the graph of y=x^3 • By looking at the graph, you should see that the graph reaches all values of y. (negative, 0, and positive) • Because of this, the range of of y=x^3 is (- , ), which shows that the graph reaches all values of y.

  11. Bounded Above • Bounded above means that there is a FIXED value which the function never rises above. • The Basic Logistic Function is bounded above at 1. • It does not have a single Y value that goes above 1.

  12. Bounded Below • Bounded below means there is a FIXED value which the function never goes below. • The squaring function is bounded below at 0. • It never has a Y value that goes below 0.

  13. Bounded • A function is said to be bounded when it is bounded above and below. • The sine graph never has a Y value that crosses 1 or -1 thus it is bounded above and below.

  14. Quizlet Activity • http://quizlet.com/415738/scatter/ • Go tothe website above and click start game. • Match the function with its correct name. • Try it as many times as you would like and try and get the best score! • Good luck!

  15. 1. What is this graphs name? • A. Squaring Function • B. Reciprocal Function • C. Square Root Function • D. Greatest Integer Function

  16. 2. What is this graphs name? • A. Sine Function • B. Cubing Function • C. Exponential Growth Function • D. Basic Logistic Function

  17. 3. What is the name of this graph? • A. Reciprocal Function • B. Sine Function • C. Natural Logarithmic Function • D. Greatest Integer Function

  18. 4. What is this graphs name? • A. Greatest Integer Function • B. Cosine Function • C. Identity Function • D. Basic Logistic Function

  19. 5. What is this graphs name? • A. Cubing Function • B. Reciprocal Function • C. Exponential Growth Function • D. Cosine Function

  20. 6. How is this graph bounded? • A. Above • B. Below • C. Both • D. Neither

  21. 7. How is this graph bounded? • A. Above • B. Below • C. Both • D. Neither

  22. 8. What is the range of this graph? • A. (-1, 1) • B. (- , ) • C. [-1,1] • D. [- , ]

  23. 9. What is the domain of this graph? • A. (- , ) • B. (0, ) • C. [- , ] • D. [- 0, )

  24. 10. What is the name, range, and domain of this graph? • A. Identity Function, (- , ), (- , ) • B. Identity Function, (- , 0] [1, ), (- , ) • C. Identity Function, [- , ], [- , ] • D. Squaring Function, [- , ], [- , ]

  25. Answer Key • 1. C • 2. D • 3. B • 4. A • 5. B • 6. B • 7. C • 8. C • 9. A • 10. A

  26. Bibliography • Pictures • http://www.google.com/imgres?um=1&hl=en&tbo=d&biw=1366&bih=643&tbm=isch&tbnid=hyqviEhvtcrUBM:&imgrefurl=http://www.mathsisfun.com/sets/function-square.html&docid=4PMl1sKL0__VUM&imgurl=http://www.mathsisfun.com/sets/images/function-square.gif&w=220&h=192&ei=92n8UPpkj4jxBPvogMgF&zoom=1&iact=hc&vpx=467&vpy=178&dur=37&hovh=153&hovw=176&tx=95&ty=63&sig=108440193668009717289&page=1&tbnh=150&tbnw=173&start=0&ndsp=23&ved=1t:429,r:3,s:0,i:144 • http://www.google.com/imgres?um=1&hl=en&tbo=d&biw=1366&bih=643&tbm=isch&tbnid=FOwN5nVR9dqYgM:&imgrefurl=http://en.wikipedia.org/wiki/Logistic_function&docid=RfC7PJvfh9XjxM&imgurl=http://upload.wikimedia.org/wikipedia/commons/thumb/8/88/Logistic-curve.svg/320px-Logistic-curve.svg.png&w=320&h=213&ei=c2r8UImKAYr29gTT7IHwDw&zoom=1&iact=hc&vpx=184&vpy=138&dur=506&hovh=170&hovw=256&tx=107&ty=84&sig=108440193668009717289&page=1&tbnh=142&tbnw=213&start=0&ndsp=18&ved=1t:429,r:1,s:0,i:85 • http://www.google.com/imgres?um=1&hl=en&tbo=d&biw=1366&bih=643&tbm=isch&tbnid=hC4ZMS8wHSmuBM:&imgrefurl=http://onemathematicalcat.org/Math/Algebra_II_obj/basic_models.htm&docid=vl1ukCpWngVlnM&imgurl=http://onemathematicalcat.org/Math/Algebra_II_obj/Graphics/fct_sqrt.gif&w=371&h=297&ei=vWj8UKHsEYWo8gThoYGwCQ&zoom=1&iact=hc&vpx=2&vpy=161&dur=602&hovh=201&hovw=251&tx=54&ty=89&sig=108440193668009717289&page=1&tbnh=147&tbnw=184&start=0&ndsp=23&ved=1t:429,r:0,s:0,i:109 • http://www.shmoop.com/points-vectors-functions/bounded-unbounded-functions-exercises.html • http://www.wikipedia.org/ • Youtube.com • Yahoooanswers.com • http://www.google.com/imgres?um=1&hl=en&sa=N&tbo=d&biw=1366&bih=643&tbm=isch&tbnid=You4eUX6EmOMaM:&imgrefurl=http://fromamathclass.blogspot.com/2012/07/idea-function-moves.html&docid=ZO9-8xOM0lLawM&imgurl=http://1.bp.blogspot.com/-N1GYAqOe4Y8/T_MCxZLc3PI/AAAAAAAAAAM/IWT8bAPZBBk/s1600/mathematical-dance-moves.jpg&w=600&h=536&ei=Dmv8UK2AOInY8gSp84HACg&zoom=1&iact=hc&vpx=597&vpy=185&dur=168&hovh=212&hovw=238&tx=168&ty=84&sig=108440193668009717289&page=3&tbnh=135&tbnw=142&start=48&ndsp=27&ved=1t:429,r:71,s:0,i:305

More Related