440 likes | 461 Views
This project focuses on improving data collection, biological knowledge, and management of deepwater snapper fisheries in the Pacific Islands. Through workshops and training, enhanced data collection methods have been implemented, leading to improved species identification and habitat mapping. Age estimation techniques and cost-effective indicators are being developed to assess stock health effectively.
E N D
WP3: Deepwater snapper Towards improved stock assessments and management
Outline Background Results achieved Project sustainability Work plan for 2015 Recommendations
Background • Deepwater snapper are an important fisheries resource in many PICTs • Declines in catches in some PICTs have raised concerns about sustainability • Lack of adequate biological and fisheries data has limited development of quantitative assessments and management plans
Background • At 2011 HoF meeting, members endorsed SPC efforts to seek funding to support a deepwater snapper project • SPC obtained funding from: • Australia, Fisheries for Food Security (2012-2015) • Vanuatu, Samoa, Tonga, and the Marshall Islands • French Pacific Fund (2011-2013) & French Development Agency (2012-2013) • New Caledonia
Deepwater snapper workshop • Deepwater snapper workshop held at SPC in July 2011 • Identify priority information and training needs • Participants from 12 PICTs • The agreed outcomes from the workshop included a work plan for SPC’s deepwater snapper activities
Work Plan There are 4 priority areas: Fisheries data collection Improving biological knowledge Fisheries assessment and management Capacity development
Catch and Effort Data • SPC’s artisanal fisheries database (TUF-ART) considered best option to manage deepwater snapper data • Standardises data collection & management • Provides consistency in how and what data are collected • Minimises development and maintenance costs • Facilitates comparisons of fisheries among countries
Data management • TUF-ART database installed in many countries (Cook Islands, Kiribati, Marshall Islands, Nauru, Niue, Samoa, Tokelau, Tonga, Tuvalu, Vanuatu) Fishing Logsheet TUF-ART Database
Port sampling programs • Established & supported development of fisheries monitoring programs in Tonga, Vanuatu, Samoa, New Caledonia & PNG • Fisheries officers trained in biological sampling • Successful ongoing data collection programs will require continued support from Fisheries Departments
Biological Sampling • Scientific cruises • Port sampling
Biological Sampling • Samples collected from >4000 fish • Samples collected include: • Otoliths – age, longevity & growth, • Gonads – sex, maturity, fecundity & spawning • Fin clips & muscle – genetics, define stocks
New Species • Identified new species – Pygmy Ruby Snapper (Etelis marshi) • Developed methods to distinguish from similar species – Ruby snapper (Etelis carbunculus) Otolith shape Black tip on tail Operculum spine Pygmy Ruby Snapper (Etelis marshi) Ruby Snapper (Etelis carbunculus)
Species Identification • Waterproof species identification cards for fishers and port samplers • Distributed to Fiji, Marshall Islands, New Caledonia, PNG, Samoa, Solomon Islands, Tonga, and Vanuatu
Deepwater Snapper Habitat • Fishers know where to catch deepwater snapper, but the full extent of their habitat is unknown • Knowledge of deepwater snapper habitat can help make informed management decisions – i.e spatial planning, development opportunities • We used fisheries and oceanographic data used to model potential distribution of deepwater snapper across WCPO
Deepwater Snapper Habitat • We produced maps of the predicted distribution of deepwater snapper across the WCPO
Main Target Species • Ruby snapper (Etelis carbunculus) • Pygmy ruby snapper (Etelis marshi) • Flame snapper (Etelis coruscans) • Crimson jobfish (Pristipomoides filamentosus)
Age estimation 1 mm 1 mm Age information needed to estimate longevity, growth rates etc. We estimate age by counting bands in sectioned otoliths
Age estimation E. coruscans E. carbunculus P. filamentosus E. marshi
Growth • Slow growth rates • Extended longevity (> 30 years)
Fisheries assessment and management • Traditional stock assessments require a long time series of reliable catch and effort data • For deepwater snapper, the cost of collecting these data is not commensurate with the economic value of most fisheries • Need an alternative approach for deepwater snapper • For other data-poor fisheries, simple indicators (e.g. % mature fish in catch) have been used • Indicators could be an appropriate method for evaluating the sustainability of deepwater snapper fisheries
Age-based indicators Length is a poor indicator of age for deepwater snapper Need to develop age-based indicators Problem ... Age estimates from counting bands in sectioned otoliths is time consuming and costly A cost effective solution ... Otolith measurements (weight, thickness etc) are good predictors of age Cheaper, easier and quicker
Otolith Measurements • Weight • Length • We measured otoliths from 4 species • Simple and rapid procedure • Width • Thickness
Age Composition Number of fish Number of fish Age (years) Age (years)
Age Composition • Otolith measurements can be used to obtain age compositions of deepwater snapper • Measuring otoliths is cheaper, easier and quicker than sectioning otoliths • $10,000 to section and read 500 otoliths • $100 to measure 500 otoliths • Fisheries officers have been trained in removing otoliths • Otolith sampling programs ongoing in Tonga and Vanuatu • Age compositions provide valuable information about the stock
Age-based Indicators - Mortality Fished population Information on fishing mortality Unfished population Information on natural mortality Number of fish Age (years) Low Fishing mortality High Fishing mortality Moderate Fishing mortality
Other age-based Indicators • If we know about growth, maturity and fecundity, other indicators include: • % mature age fish ‘Let them spawn’ • % fish at optimum age ‘Let them grow’ • % very old fish ‘Let mega-spawners live’
Age-based Indicators • Mature at 8 years • Optimum age 14-18 years Mature Optimum Age Mega Spawners Immature ` 71% 12% 16% 29% Number of fish Age (years)
Age-based Indicators • Mature at 8 years • Optimum age 14-18 years Mature Optimum Age Mega Spawners Immature ` 30% 0% 0% 70% Number of fish Age (years)
Age-based Indicators Fishing mortality (F) Harvest rule F < 50% Natural mortality Number of licenses may increase F > 150% Natural mortality F = Natural mortality Number of licenses remains constant Number of licenses reduced • Age-based indicators can inform us about the sustainability of the fishery • And they can be used to trigger the implementation of harvest control rules, e.g.
Age-based Indicators • Age-based indicators can now be used for deepwater snapper because: • Cruises have provided reference age composition data from near unexploited populations – natural mortality • Methods have been developed to derive age compositions from otolith measurements • Monitoring programs have been established and are ongoing in Tonga and Vanuatu • Reproductive biology will be available in 2015
Capacity development • Supported 4 Pacific Islanders to complete postgraduate degrees • Samoa – Ueta Fa’asili Jr (MSc, University of Wollongong) - 2013 “Review of Samoa’s Deepwater Snapper Fisheries Data” • Tuvalu – Etuati Poulasi (MSc, Australian Maritime College) – 2013 “Age, growth and reproductive biology of saddleback snapper Paracaesio kusakarii” • Vanuatu – Jeremie Kaltavara (MSc, Australian Maritime College) - 2014 “Biology and Fishery of the Deepwater Eteline Snappers in Vanuatu” • Tonga – Hau Halafihi (PhD, University of Canterbury) - 2015 “Ecology and biology of Etelis coruscans and Pristipomoides filamentosus at seamounts: Case Study at Tonga Deepwater Drop-line Fishery”
Project Sustainability • Monitoring – Maintaining data collection and using TUF-ART to manage data (on track for Vanuatu and Tonga) • Assessments – Trained staff are retained in the Departments to continue the assessment work (on track for Vanuatu and Tonga) • Project extension – Extension of project to other countries (PNG, New Caledonia, Fiji, Wallis & Futuna) • Knowledge generation – project has seeded Pacific-wide collaborations
Work Plan for 2015 • Project concludes in November 2015 • Priorities for 2015: • Process the remaining otoliths and gonads • Provide estimates of growth, mortality and reproductive biology of key deepwater snapper species • Provide the first evaluation of the sustainability of a deepwater snapper fishery using age-based indicators
Recommendations • Heads of Fisheries are invited to note: • The progress that has been made to date • The project will end in November 2015 • Project sustainability is dependent on continued data collection programs and port sampling activities. Resources for these activities will need to be sourced once the current project is completed. • The indicator approach for assessing deepwater snapper fisheries would also be suitable for other data-poor coastal and oceanic fisheries
For more information... SPC Deepwater snapper webpage: http://www.spc.int/fame/en/projects/fisheries-fo-food-security/improving-the-mgt-of-deepwater-snapper-resources • Project objectives & strategies • Project outputs • Journal publications • Newsletter articles • Fact sheets • Species ID booklet