260 likes | 431 Views
Cosmic Structure as the Quantum Interference of a Coherent Dark Wave. Hsi-Yu Schive ( 薛熙于 ), Tzihong Chiueh ( 闕志鴻 ), Tom Broadhurst. PASCOS (Nov. 24, 2013). Outline. Introduction Cold dark matter ( CDM ) vs. wave dark matter ( ѱ DM ) Numerical Methods ( G A M E R)
E N D
Cosmic Structure as the Quantum Interference of a Coherent Dark Wave Hsi-Yu Schive (薛熙于), TzihongChiueh(闕志鴻), Tom Broadhurst PASCOS (Nov. 24, 2013)
Outline • Introduction • Cold dark matter (CDM) vs. wave dark matter (ѱDM) • Numerical Methods (GAMER) • Adaptive Mesh Refinement (AMR) • Graphic Processing Unit (GPU) • ѱDM Simulations • Halo density profile • Halo mass function • Boson mass determination • Summary
Cold Dark Matter • CDM (Cold Dark Matter): • Collisionless particles with self-gravity • Work very well on large scales • Controversial on small scales (dwarf galaxies) • Main issues on small scales: • Missing satellites problem • Over abundance of dwarf galaxies ? • Cusp-core problem • Mass is too concentrated at the center ?
Missing Satellites Problem Weinberg et al. 2013
Missing Satellites Problem • Enclosed mass within 300 pc vs. luminosity • Surprisingly uniform around 107 M⊙ Strigari et al. 2008
Cusp-Core Problem • Density profile in CDM cuspy • Navarro–Frenk–White profile (NFW): ρNFW(r) α x-1(1+x)-2, where x = r/rs Rocha et al. 2013
Cusp Core Problem • Enclosed mass vs. radius • Cuspy profile ρ(r) α r-1 M(r) αr2 • Cored profile ρ(r) αr0 M(r) αr3 Walker & Peňrrubia 2011
Wave Dark Matter (ѱDM) • Governing eq.: Schrödinger-Poisson eq. in the comoving frame • η ≡ m/ћ: particle mass, ψ: wave function • φ: gravitational potential, a: scale factor • Background density has been normalized to unity
Quantum Fluid • Schrödinger eq. can be rewritten into conservation laws quantum stress Jeans wave number in ѱDM
Numerical Challenge Density Wave function Ultra-high resolution is required
GAMERGPU-accelerated Adaptive MEshRefinement Code for Astrophysics
Adaptive Mesh Refinement (AMR) • Example: interaction of active galactic nucleus (AGN) jets Layer 2 Energy density Layer 1 Layer 2
Graphic-Processing-Unit(GPU) Animations, video games, data visualization … GeForce GTX 680
Graphic-Processing-Unit(GPU) GeForce GTX 680 Astrophysics !?
CDM (GADGET) ψDM vs. CDM (Large Scale) • ψDM (GAMER)
Cored instead of cuspy profiles Core profiles satisfy the solitonic solution Lower limit in M300 consistent with Milky Way dwarf spheroidal galaxies (dSph) Halo Density Profile
Solitonic Solution in ψDM • Only two free parameters: • λ & mB
mB Determination I:Stellar Phase-space Distribution Jeans Eq.: Assuming constant and isotropic velocity dispersion Find the best-fit mB & rc mB ~ 8.1*10-23eV rc ~ 0.92 kpc
mB Determination II:Dark Matter Mass Profile Mass estimator: Fornax: 3 stellar populations get M(ri), i=1,2,3 Consistent with the best-fit mB and rc from stellar phase-space distribution NFW in CDM fails again
Linear Power Spectrum KJ Solution to the missing satellites problem !?
M300 Distribution Roughly consistent with the Milky Way dSphs, where M300~ 106 – 5*107 M☉ M300 cut ~ 106 M⊙ • Desperatefor better statistics (more samples)!! • Require • (1) bigger computers • and/or • (2) ingenious numerical • schemes
Summary • Wave Dark Matter (ψDM): • An alternative dark matter candidate • Governing eq.: Schrödinger-Poisson eq. • Quantum pressure suppress structures below the Jeans scale • Numerical Method: • Adaptive mesh refinement (AMR) use computational resource efiiciently • Graphic processing unit (GPU) outperform CPU by an order of magnitude • GAMER : GPU-accelerated Adaptive-MEsh-Refinement Code for Astrophysics • Schiveet al. 2010, ApJS, 186, 457 • Schiveet al. 2012, IJHPCA, 26, 367 • ψDM Simulations • Solitonic cores within each halo solution to the cusp-core problem !? • Objects with M300 < 106 M☉ are highly suppressed solution to the missing satellites problem !? • By fitting to the Fornax dwarf spheroidal galaxies mB ~ 8.1*10-23eV