1 / 9

Introduction to Hierarchical Production Planning and (Demand) Forecasting

Introduction to Hierarchical Production Planning and (Demand) Forecasting. The role of hierarchical production planning in modern corporations (borrowed from Heizer and Render). Production Planning through Time-based Decomposition. Corporate Strategy. Aggregate Unit Demand.

mwhitworth
Download Presentation

Introduction to Hierarchical Production Planning and (Demand) Forecasting

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Introduction toHierarchical Production Planning and (Demand) Forecasting

  2. The role of hierarchical production planning in modern corporations(borrowed from Heizer and Render)

  3. Production Planning through Time-based Decomposition Corporate Strategy Aggregate Unit Demand Aggregate Planning (Plan. Hor.: ½-2 years, Time Unit: 1 month) Capacity and Aggregate Production Plans End Item (SKU) Demand Master Production Scheduling (Plan. Hor.: a few months, Time Unit: 1 week) SKU-level Production Plans Manufacturing and Procurement lead times Materials Requirement Planning (Plan. Hor.: a few months, Time Unit: 1 week) Component Production lots and due dates Shop floor-level Production Control Part process plans (Plan. Hor.: a day or a shift, Time Unit: real-time)

  4. Forecasting • Def: The process of predicting the values of a certain quantity, Q, over a certain time horizon, T, based on past trends and/or a number of relevant factors. • In the context of OM, the most typically forecasted quantity is future demand(s), but the need of forecasting arises also with respect to other issues, like: • equipment and employee availability • technological forecasts • economic forecasts (e.g., inflation rates, exchange rates, housing starts, etc.) • The time horizon depends on • the nature of the forecasted quantity • the intended use of the forecast

  5. Forecasting future demand • Product/Service demand: The pattern of order arrivals and order quantities evolving over time. • Demand forecasting is based on: • extrapolating to the future past trends observed in the company sales; • understanding the impact of various factors on the company future sales: • market data • strategic plans of the company • technology trends • social/economic/political factors • environmental factors • etc • Rem: The longer the forecasting horizon, the more crucial the impact of the factors listed above.

  6. Demand Patterns • The observed demand is the cumulative result of: • some systematic variation, resulting from the (previously) identified factors, and • a random component, incorporating all the remaining unaccounted effects. • (Demand) forecasting tries to: • identify and characterize the expected systematic variation, as a set of trends: • seasonal: cyclical patterns related to the calendar (e.g., holidays, weather) • cyclical: patterns related to changes of the market size, due to, e.g., economics and politics • business: patterns related to changes in the company market share, due to e.g., marketing activity and competition • product life cycle: patterns reflecting changes to the product life • characterize the variability in the demand randomness

  7. Forecasting Methods • Qualitative (Subjective):Incorporate factors like the forecaster’s intuition, emotions, personal experience, and value system; these methods include: • Jury of executive opinion • Sales force composites • Delphi method • Consumer market surveys • Quantitative (Objective): Employ one or more mathematical models that rely on historical data and/or causal/indicator variables to forecast demand; major methods include: • time series methods: F(t+1) = f (D(t), D(t-1), …) • causal models: F(t+1) = f(X1(t), X2(t), …)

  8. Selecting a Forecasting Method • It should be based on the following considerations: • Forecasting horizon (validity of extrapolating past data) • Availability and quality of data • Lead Times (time pressures) • Cost of forecasting (understanding the value of forecasting accuracy) • Forecasting flexibility (amenability of the model to revision; quite often, a trade-off between filtering out noise and the ability of the model to respond to abrupt and/or drastic changes)

  9. Determine Method • Time Series • Causal Model Collect data: <Ind.Vars; Obs. Dem.> Fit an analytical model to the data: F(t+1) = f(X1, X2,…) Use the model for forecasting future demand Monitor error: e(t+1) = D(t+1)-F(t+1) Model Valid? Applying a Quantitative Forecasting Method - Determine functional form - Estimate parameters - Validate Update Model Parameters Yes No

More Related