1 / 27

Enzymes

Enzymes. Introduction. Enzymes are usually proteins that act as catalysts, compounds that increase the rate of chemical reactions. They bind specifically to a substrate, forming a complex. This complex lowers the activation energy in the reaction: without the enzyme becoming consumed or

myles-evans
Download Presentation

Enzymes

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Enzymes

  2. Introduction • Enzymes are usually proteins that act as catalysts, compounds that increase the rate of chemical reactions. • They bind specifically to a substrate, forming a complex. • This complex lowers the activation energy in the reaction: • without the enzyme becoming consumed or • without changing the equilibrium of the reaction. • A product is produced at the end of the reaction • Mohammed Laqqan

  3. General Properties of Enzymes • Like all proteins 1°, 2°, 3°, and 4° structures • Active site → cavity where substrate interacts • Often water-free site • Reacts with charge moieties • Allosteric site • Another site on enzyme where co-factors or regulatory molecules interact • Mohammed Laqqan

  4. Isoenzyme • Isoenzymes: are enzymes that differ in amino acid sequence but catalyze the same chemical reaction. • Now called “isoform” of an enzyme • They have similar catalytic activity, but are different biochemically or immunologically and can be demonstrated by electrophoretic mobility, differences in absorption properties or by their reaction with a specific antibody • Mohammed Laqqan

  5. Cofactors • Non-protein molecules required for enzyme activation • Inorganic Activators • Chloride or magnesium ions, etc. • Organic coenzymes • e.g. Nicotinamide adenine dinucleotide (NAD) • Mohammed Laqqan

  6. Enzyme classification Plasma vs. non-plasma specific enzymes • Plasma specific enzymeshave a very definite/specific function in the plasma 1) Plasma is normal site of action 2) Concentration in plasma is greater than in most tissues 3) Often are liver synthesized 4) Examples: plasmin, thrombin • Mohammed Laqqan

  7. Non-plasma specific enzymes have no known physiological function in the plasma 1) Some are secreted into the plasma 2) A number of enzymes associated with cell metabolism normally found in the plasma only in low concentrations. • Source of non-plasma enzymes • From cells during the normal process of breakdown and replacement. • higher concentration following injury or death of tissue cells. • altered membrane permeability that may occur with inflammation An increased plasma concentration of these enzymes is associated with cell disruption or death • Mohammed Laqqan

  8. Classes of Enzymes • International Union of Biochemistry (IUB) 1 = Oxidoreductases (Examples: LDH, G6PD) Involved in oxidation - reduction reactions 2 = Transferases (Examples: AST, ALT) Transfer functional groups 3 = Hydrolases (Examples: acid phosphatase, lipase) Transfer groups to -OH 4 = Lyases (Examples: aldolase, decarboxylases) Add across a double bond 5 = Isomerases (Example: glucose phosphate isomerase) Involved in molecular rearrangements 6 = Ligases Complicated reactions with ATP cleavage • Mohammed Laqqan

  9. Factors Affecting Enzyme Levels in Blood • Entry of enzymes into the blood • Leakage from cells • Altered production of enzymes • e.g. increased osteoblastic activity results in increase in enzymes in bone disease • Clearance of enzymes • Half life vary from few hours to several days • Mohammed Laqqan

  10. Enzyme measurement • Enzymes are not directly measured • Enzymes are commonly measured in terms of their catalytic activity • We don’t measure the molecule … • We measure how much “work” it performs (catalytic activity) • The rate at which it catalyzes the conversion of substrate to product • The enzymatic activity is a reflection of its concentration • Activity is proportional to concentration • Mohammed Laqqan

  11. Photometric measurement of activity • Enzyme activity can be tested by measuring • Increase of product • Decrease of substrate • Decrease of co-enzyme • Increase of altered co-enzyme • If substrate and co-enzyme are in excess concentration, the reaction rate is controlled by the enzyme activity. • Mohammed Laqqan

  12. Measuring enzyme activity • NADH( a common co-enzyme ) absorbs light at 340 NM • NAD ( the reduced form ) does not absorb light at 340 nm • Increased ( or decreased ) NADH concentration in a solution will cause the Absorbance (Abs) to change. • Mohammed Laqqan

  13. Measurement of Enzymatic Activity • One of two general methods may be used to measure the extent of an enzymatic reaction • Fixed time • Measure at specified time (e.g. 0 and 60 seconds) • The reactants are combined the reaction proceed for a designated time • The reaction is stopped usually by inactivating the enzyme with a weak acid • And a measurement is made of the amount of reaction that has occurred • Mohammed Laqqan

  14. Measurement of Enzymatic Activity • Continuous monitoring or kinetic assay • Are recorded by the spectrophotometer • Measurements of absorbance change are made during the reaction either at: • Measure at specific time intervals (usually every 0, 30, 60, 90, 120 seconds) • Mohammed Laqqan

  15. Measurement Units • Reported as “activity” not concentration • IU = amount of enzyme that will convert 1 μmol of substrate per minute in specified conditions • Usually reported in IU per liter (IU / L) • SI unit = Katal = mol/sec moles of substrate converted per second • enzyme reported as katals per liter (kat / L) • 1 IU = 17nkat • Mohammed Laqqan

  16. Creatine Kinase (CK) • Action of this enzyme is associated with the regeneration and storage of high energy phosphate (ATP). • The enzyme catalyzes the conversion of Creatine to Creatine Phosphate • The enzyme also catalyzes the reversible reaction • Found in skeletal muscle, cardiac muscle, and brain • CK is especially useful to diagnose • AMIs • Skeletal muscle diseases ( Muscular Dystrophy ) • Mohammed Laqqan

  17. CK has 3 isoenzymes • Each isoenzyme is composed of two different polypeptide chains (M & B) • CK - BB (CK1) Brain • CK - MB (CK2) Cardiac • CK - MM (CK3) Muscle • Skeletal muscle CK is 99% CK-MM • Cardiac muscle CK is 80% CK-MM and 20% CK-MB • BB migrates fastest to anode then MB & MM • MM is highest in serum in healthy patients • MB trace to <6% total, BB 0-trace • Mohammed Laqqan

  18. Because of CK – MB’s association with cardiac tissue, • increased CK – MB ( > 6% of the total CK activity ) is a strong indication of AMI • Post AMI CK-MB • CK-MB increases 4 – 8 hours post AMI • Peaks at 12 - 24 hours post AMI • Returns to normal 48 - 72 hours later

  19. Specimen: Serum, heparin plasma or EDTA plasma. • CK assays are often coupled assays CK • In the example below, the rate at which NADPH is produced is a function of CK activity in the first reaction. • Hexokinase and G6PD are auxiliary enzymes • Reverse reaction most commonly performed in clinical laboratory methods

  20. Interference • RBCs lack CK, but hemolyzed RBCs release Adenylate Kinase (AK) into the plasma, • AK reacts with ADP to produce ATP which is then available to participate in the reaction causing falsely increased CK activity • The interference can occur with hemolysis greater than 200 mg/dl of hemoglobin • CK should be stored in the dark place because CK is inactivated by daylight • Mohammed Laqqan

  21. Lactate Dehydrogenase (LDH) • Catalyzes interconversion of lactic and pyruvic acids • NAD as coenzyme • High activities in heart, liver, muscle, kidney, and RBC • Lesser amounts: Lung, smooth muscle and brain • Elevated with diseases of the above (Liver disease, AMI & Hemolytic diseases) • Mohammed Laqqan

  22. LDH Isoenzymes • Because increased total LDH is relatively non-specific, LDH isoenzymes can be useful • 5 isoenzymes composed of a cardiac (H) and muscle ( M ) component • LD - 1 ( HHHH ) Cardiac , RBCs • LD - 2 ( HHHM ) Cardiac , RBCs • LD - 3 ( HHMM ) Lung, spleen, pancreas • LD - 4 ( HMMM ) Hepatic and skeletal • LD - 5 ( MMMM ) Hepatic and skeletal • Mohammed Laqqan

  23. In healthy patients • LD-2 is in highest quantity then LD-1, LD-3, LD-4 and LD-5 • Heart problems 2-10 x (Upper Limit of Normal) ULN in acute MI • If problem is not MI, both LD1 and LD2 rise, with LD2 being greater than LD1 • If problem is MI, LD1 is greater than LD2. This is known as a flipped pattern • The highest levels of LD are seen in pernicious anemia and hemolytic disorders • LD-3 with pulmonary involvement • LD-5 predominates with liver & muscle damage • Mohammed Laqqan

  24. Assay for Enzyme activity • The reaction can proceed in either a forward or reverse direction • Lactate + NAD+ Pyruvate + NADH + H+ • The optimal pH: • for the forward reaction is 8.3 – 8.9 • For the reverse reaction 7.1 – 7.4 LD LD • Mohammed Laqqan

  25. Specimen: Serum, heparin plasma or EDTA plasma • Measurements & Sources of error • RBCs have 100+ times the amount of LD • Hemolysis ruins sample for testing • LD unstable during storage – test within 48 hours • LD-5 most labile store at 25oC not 4oC • In AMI, LDH levels begin to rise within 12h to 24h. • Reach peak within 48h to 72h. • Remain elevated for 10 days. • Mohammed Laqqan

  26. Clinical Significance • The measurement of the serum concentration of LD has proven to be useful in the diagnosis ofmyocardial infarction. • The LD enzyme activity in serum does not rise as much as CK or AST aftermyocardial infarction, but it does remain elevated for a much longer period of time. • This is quite important when the patient does not see a physician for 3 or 4 days following an infarct. • In hepatocellular disease, the serum activity of LD rises, but the measurement of this enzyme is much less useful than that of AST or ALT because the test is less sensitive. • Mohammed Laqqan

More Related