1 / 35

Precision spectroscopy in the charmonium mass region using antiproton annihilation PANDA at FAIR

Precision spectroscopy in the charmonium mass region using antiproton annihilation PANDA at FAIR. Goal. In the next 1-2 years PANDA should prepare a physics book that details specific observables and background, provides detailed simulations of the sensitivity to the physics parameters.

myrrh
Download Presentation

Precision spectroscopy in the charmonium mass region using antiproton annihilation PANDA at FAIR

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Precision spectroscopy in the charmonium mass region using antiproton annihilationPANDA at FAIR J. Ritman (FZ-Jülich/RUB)

  2. Goal • In the next 1-2 years PANDA should prepare a physics book that details specific observables and background, provides detailed simulations of the sensitivity to the physics parameters J. Ritman (FZ-Jülich/RUB)

  3. Main Physics Issues at PANDA • Confinement • Charmonium (see talk of Diego Bettoni) • Existence of exotic hadrons () • Properties of hadrons • Hadronic mass, charm in matter (A. Gillitzer) • EM coupling, DY, hard processes etc. (Michael Düren) • Spectroscopy of charmed baryons () • New D-Meson states • New baryon states “at the end of the alphabet” • Strange Baryons in strong fields (J. Pochodzalla) J. Ritman (FZ-Jülich/RUB)

  4. Precision Spectroscopy • High statistical precision • High mass resolution • Crystal Ball: typical resolution ~ 10 MeV • Fermilab: 240 keV  p/p < 10-4 needed J. Ritman (FZ-Jülich/RUB)

  5. q q Confinement on the Lattice G. Bali et al., hep-lat/0003012 Distance between Quarks [fm] J. Ritman (FZ-Jülich/RUB)

  6. 8.0 4.0 7.1 3.9 3.8 6.3 3.7 3.6 5.5 3.5 3.4 3.3 4.8 3.2 3.1 4.1 3.0 3.4 2.9 JP=0+ 1- 1+ (0,1,2)+ 2- (1,2,3)- Quark-Antiquark Binding  Charmonium Physics Open questions … ψ(33S1) D*D* χc2(23P2) pp [GeV/c] ψ(13D3) Mcc [GeV/c2] ηc(31S0) χc1(23P1) Peculiar ψ(4040) ψ(13D2) DD* h1c(21P1) χc0(23P0) ψ(11D2) ψ(13D1) DD Terra incognita for 2P and 1D-States ψ(23S1) ηc(21S0) χc2(13P2) h1c(11P1) χc1(13P1) ηc’- ψ(2S) splitting χc0(13P0) h1c– unconfirmed … Exclusive Channels Helicity violation G-Parity violation Higher Fock state contributions Spin dependence of potentialLQCD  NRQCD J/ψ(13S1) ηc – inconsistencies ηc(11S0) J. Ritman (FZ-Jülich/RUB)

  7. “Exotic” Hadrons • Quarkmodels usually account for qq states • Other color neutral configurations with same quantum numbers can (and will mix) • Decoupling only possible for • narrow states • vanishing leading qq term J. Ritman (FZ-Jülich/RUB)

  8. Hadronic Molecules: Example f0 • Breit-Wigner will be distorted near thresholds. (Haidenbauer,Hanhart, Kalishnikova,...) • Flatte J. Ritman (FZ-Jülich/RUB)

  9. P P ψ‘ S χc S J/ψ Charmed Hybrids • LQCD: • gluonic excitations of the quark-antiquark-potential may lead to bound states • S-potential for one-gluon exchange • P-potential from excited gluon flux • mHcc ~ 4.2-4.5 GeV/c2 • Light charmed hybridscould be narrow if open charm decays are inaccessible or suppressed V(R)/GeV Hcc 4 DD 3.5 3 R/r0 2 1 J. Ritman (FZ-Jülich/RUB)

  10. Charm Hybrids distance between quarks Ground state has spin exotic quantum numbers J. Ritman (FZ-Jülich/RUB)

  11. g g g Glueballs C. Morningstar PRD60, 034509 (1999) Self interaction between gluons  Construction of color-neutral hadrons with gluons possible exotic glueballs don‘t mix with mesons (qq) 0--, 0+-, 1-+, 2+-, 3-+,... J. Ritman (FZ-Jülich/RUB)

  12. Recently Discovered Hadrons J. Ritman (FZ-Jülich/RUB)

  13. New State in Two Ds+ Modes DsJ*(2317)+ Ds+π0 Ds+  K+K–π+ 126753 Events in peak DS*+(2112) Combinatorial DS*+ g M = 2316.8  0.4 MeV/c2s = 8.6  0.5 MeV/c2 Resolution from MC is s = 8.9  0.2 MeV/c2 BABAR DsJ*(2317)+ Ds+π0 Ds+  K+K–π+π0 27333 Events in peak M = 2317.6  1.3 MeV/c2s = 8.8  1.1 MeV/c2 BABAR Babar, Aubert et al., PRL 90(2003)242001 J. Ritman (FZ-Jülich/RUB)

  14. Search for a Ds+π0γ State Signal + Sideband Difference N = 140 ± 22 BABAR BABAR Ds* Sideband [GeV/c2] [GeV/c2] m(K+K-π+π0γ)- m(K+K-π+γ) m(K+K-π+π0γ)- m(K+K-π+γ) ΔM = 344.6 ± 1.2 MeV/c2M = 2456.5 ± 1.4 MeV/c2 Babar, Preliminary, PRD, Journal Draft J. Ritman (FZ-Jülich/RUB)

  15. The DS± Spectrum |cs> + c.c. was not expected to reveal any surprises Potential model Old measurements New observations Are these molecules? 0- 1- 0+ 1+ 2+ 3- Recent Open Charm Discoveries m [GeV/c2] Ds1 D*K Ds2* DsJ (2458) D0K DsJ* (2317) Ds* Ds JP J. Ritman (FZ-Jülich/RUB)

  16. Hadrons in Nuclear Matter • Hadronic mass arises from interaction with the vacuum, expect changes to the spectral function in nuclear matter. M. Lutz, C.Korpa, PLB 633 (2006) 43 J. Ritman (FZ-Jülich/RUB)

  17. The HESR in the FAIR Topology • P-Linac • SIS18 • SIS100 (30 GeV) • PBar production Target • RESR/CR • HESR J. Ritman (FZ-Jülich/RUB)

  18. Basic Data • Circumference 574 m (space included for PAX extension) • Momentum:1.5 to 15 GeV/c • HESR as synchrotron • Injection of (anti-)protons from RESR at 3.8 GeV/c • Acceleration rate 0.1 GeV/c/s • Electron cooling up to 8.9 GeV/c • Stochastic cooling above 3.8 GeV/c J. Ritman (FZ-Jülich/RUB)

  19. Electron Cooling : HR-Mode @ p = 8.9 GeV/c red: horizontal blue:vertical cooling OFF • Electron cooling and target ON • Equilibrium dominated by IBS Final rms-momentum spread with target and IBS : 3.0 x 10-5 At 3.8 GeV/c 4x10-5 J. Ritman (FZ-Jülich/RUB)

  20. Stochastic Cooling: HL-Mode @ p = 3.8 GeV/c Transverse and longitudinal stochastic cooling red: horizontal blue:vertical rms-emittances Including IBS+Target rmsrelative momentum spread Final rms-momentum spread:  1.5 x 10-4 J. Ritman (FZ-Jülich/RUB)

  21. Example: Stochastic Cooling at 4.8 GeV/cHR- Mode • Final rms-momentum spread • in the High Resolution Mode • above 3 GeV: • 4 x 10-5 • in about 100 s. • Only longitudinal cooling: • Initial emittance will increase • from 0.08 mm mrad to 8 mm mrad within one hour due to target-beam interaction. J. Ritman (FZ-Jülich/RUB)

  22. Measuring Area J. Ritman (FZ-Jülich/RUB)

  23. The PANDA Detector 12 m 5 m J. Ritman (FZ-Jülich/RUB)

  24. WASA Pellet Target at COSY • Photo from test stand,  now in the COSY ring • Operational, optimizationproceeding • Beam on target in Sept. J. Ritman (FZ-Jülich/RUB)

  25. Summary • Strong QCD: many interesting open questions related to • Confinement • Hadron (spin) structure • High rates with antiproton beams • Charm quark mass range PANDA/HESR J. Ritman (FZ-Jülich/RUB)

  26. J. Ritman (FZ-Jülich/RUB)

  27. Outline • Strong QCD • Confinement • Potential • Types of hadrons • (Broken) Symmetries in Hadronic Systems (cSB) • Planned experiments with PANDA at FAIR J. Ritman (FZ-Jülich/RUB)

  28. Strong QCD • aEM=1/137 increases by ~ 2.7% between E=0 and MZ • aS rises dramatically to ~ 1 for distances of about 1 fm • Strong QCD - Perturbation theory fails - New Phenomena appear • Confinement • Hadronic mass generation J. Ritman (FZ-Jülich/RUB)

  29. Charmonium – the Positronium of QCD • Charmonium • Positronium Mass [MeV] Binding energy [meV] 4100 y ¢¢¢ (4040) Ionisations energy P (~ 3940) 3 2 0 3900 D 3 (~ 3800) P (~ 3880) 3 3 D 3 S 3 S 3 1 3 3 3 D 1 2 1 0 1 2 3 D P (~ 3800) D 3 -1000 3 1 1 y ¢¢ (3770) 0 2 D 2 P 3 3 D 2 P 3 D 3 3 2 1 2 2 S 3 2 2 S 1 1 1 2 P 1 3 Threshold ¢ ~ 600 meV 0 y (3686) 3700 1 2 P 3 0 10-4 eV h ¢ (3590) -3000 c c (3556) 2 h (3525) c c (3510) 1 3500 c (3415) 0 -5000 3300 1 S 3 8·10-4 eV 1 S 1 1 0 -7000 y (3097) 3100 0.1 nm + - e e C 1 fm h (2980) C c 2900 J. Ritman (FZ-Jülich/RUB)

  30. The Spin-Dependent Potential spin-orbit (fine structure) spin-spin (hyperfine structure) tensor VS and VV are the scalar and vector components of the non-relativistic potential J. Ritman (FZ-Jülich/RUB)

  31. In pp annihilation all mesons can be formed Resonance cross section Measured rate Beam CM Energy Why Antiprotons? • e+e- annihilation via virtual photon: to 1st order only states with Jpc = 1-- • Resolution of the mass and width is only limited by the beam momentum resolution J. Ritman (FZ-Jülich/RUB)

  32. Central Tracking Detectors • Straw-Tubes (or TPC…) • MVD J. Ritman (FZ-Jülich/RUB)

  33. Micro Vertex Detectors • Needed for D meson identification (ct ~ 100,300 mm) • FZJ (IKP+ZEL+ZAT) is taking on the following activities: • System design • Simulations • Readout chain • Prototype testing • Services Together with Dresden J. Ritman (FZ-Jülich/RUB)

  34. Central Tracker • Straw-Tubes alternative: TPC with GEM readout • Building on in-house expertise (TOF, WASA) • IKP is taking on: • Design • - low mass (full system ~1%X0), self supporting • - longitudinal coordinate: skewed double-layers, or time dependent charge division • Simulation • Prototyping J. Ritman (FZ-Jülich/RUB)

  35. Prototype Development Single Tube, Fe Source z-Resolution ~ 8 mm Two tubes, Sr Source z-Resolution ~ 35 mm J. Ritman (FZ-Jülich/RUB)

More Related