400 likes | 719 Views
Numerical Analysis – Linear Equations(I). Hanyang University Jong-Il Park. Linear equations. N unknowns, M equations. coefficient matrix. where. Solving methods. Direct methods Gauss elimination Gauss-Jordan elimination LU decomposition Singular value decomposition …
E N D
Numerical Analysis – Linear Equations(I) Hanyang University Jong-Il Park
Linear equations • N unknowns, M equations coefficient matrix where
Solving methods • Direct methods • Gauss elimination • Gauss-Jordan elimination • LU decomposition • Singular value decomposition • … • Iterative methods • Jacobi iteration • Gauss-Seidel iteration • …
Basic properties of matrices(I) • Definition • element • row • column • row matrix, column matrix • square matrix • order= MxN (M rows, N columns) • diagonal matrix • identity matrix : I • upper/lower triangular matrix • tri-diagonal matrix • transposed matrix: At • symmetric matrix: A=At • orthogonal matrix: At A= I
Basic properties of matrices(II) • Diagonal dominance • Transpose facts
Basic properties of matrices(III) • Matrix multiplication
Over-determined/Under-determined problem • Over-determined problem (m>n) • least-square estimation, • robust estimation etc. • Under-determined problem (n<m) • singular value decomposition
Substitution Upper triangular matrix Lower triangular matrix
Gauss elimination • Step 1: Gauss reduction • =Forward elimination • Coefficient matrix upper triangular matrix • Step 2: Backward substitution
Gauss reduction Gauss reduction
Troubles in Gauss elimination • Harmful effect of round-off error in pivot coefficient Pivoting strategy
Pivoting strategy • To determine the smallest such that and perform Partial pivoting dramatic enhancement!
Scaled partial pivoting • Scaling is to ensure that the largest element in each row has a relative magnitude of 1 before the comparison for row interchange is performed.
Complexity of Gauss elimination Too much!
Summary: Gauss elimination 1) Augmented matrix의 행을 최대값이 1이 되도록 scaling(=normalization) 2) 첫 번째 열에 가장 큰 원소가 오도록 partial pivoting 3) 둘째 행 이하의 첫 열을 모두 0이 되도록 eliminating 4) 2행에서 n행까지 1)- 3)을 반복 5) backward substitution으로 해를 구함 0 0 0
Eg. Obtaining inverse matrix(II) Backward substitution For each column
LU decomposition • Principle: Solving a set of linear equations based on decomposing the given coefficient matrix into a product of lower and upper triangular matrix. A=LU L-1 Ax = b LUx = b L-1 LUx = L-1 b Upper triangular L-1 b=c U x = c (1) L Lower triangular L L-1 b = Lc L c = b (2) By solving the equations (2) and (1) successively, we get the solution x.
Various LU decompositions • Doolittle decomposition • L의 diagonal element 를 모두 1로 만들어줌 • Crout decomposition • U의 diagonal element 를 모두 1로 만들어줌 • Cholesky decomposition • L과 U의 diagonal element 를 같게 만들어줌 • symmetric, positive-definite matrix에 적합
Programming using NR in C(I) • Solving a set of linear equations
Programming using NR in C(II) • Obtaining inverse matrix
Programming using NR in C(III) • Calculating the determinant of a matrix
Homework #5 (Cont’) [Due: 10/22]