270 likes | 416 Views
From Rydberg to Atto physic. Is matter a wave ?. Joseph John Thomson : Characterization of the e lectron as an elementary particle Max Planck : Explication of the Black body radiation - Planck constant Albert Einstein : Explication of the P hotoelectric effect
E N D
From Rydberg to Atto physic Is matter a wave ?
Joseph John Thomson: Characterizationof the electron as an elementaryparticleMax Planck: Explicationof the Black bodyradiation - Planck constant Albert Einstein: Explicationof the Photoelectriceffect Ernest Rutherford: Discovery ofnucleus Johan JakobBalmer& Johannes Rydberg: Discrete spectral lines in vapour lamp 1897/ 1911 1884/ 1888 Big Bang -33 000
Louis de Broglie: Wave-particle duality Werner Heisenberg: uncertainty principle Rudolf Schrödinger: Quantum mechanics Wolgan Pauli: Exclusion principle Paul Dirac: Relativistic Quantum mechanics Niels Bohr: Firstatomicmodel Joseph John Thomson /Max Planck / Albert Einstein Ernest Rutherford Johan Jakob Balmer / Johannes Rydberg 1924 /19 1913 1897/ 1911 1884/ 1888 Big Bang -33 000
Experiences on nano Experiences on surface Experiences on molecules Experiences on atoms • Modern theory • Atoms, • Molecules, • Solid, • Surface 2010 Laser visible (CW, ns, ps, fs) 2000 1990 Synchrotron X-ray (ns, ps) 1980 1970 1960 XUV X-ray (fs, as) 1950 Louis de Broglie Werner Heisenberg Rudolf Schrodinger Wolgan Pauli Paul Dirac 1940
Dynamics in real time To capture a moving object we need... an exposure time /shutter faster than the motion ! Stroboscope Sequential
t<1fs E>2 eV Electron dynamics – attosecond timescale Heisenberg uncertainties electron XUV source with temporal coherence ion+
Photoionization dynamics 2 photon 1 photon Because everything is a wave, we can assign a phase to everything… Interference between different ionization pathways arise from phase differences step-wise direct direct step-wise
Harmonic generation in a gas Attosecond pulses generation Gas (Ar) focusing optic filter wheel 4 mJ, 35 fs 800 nm Ti:Saph
Harmonic generation in a gas Corkum and Krausz, Nature physics 3, 381 (2007)
Harmonics : Attosecond pulse trains coupled, well-known phase! Without filtering 10-20 eV bandwidth 260 as/pulse Filtering one-two harmonics 100 meV bandwidth/harmonic fs timescale
Pump-Probe experiments focusing mirror recombination mirror Electron detection XUV Pump delay stage <30nm IR Probe 4 mJ, 35 fs 800 nm Ti:Saph
Ionization with Harmonics + IR probe IR probe sidebands It is complicated… XUV pump mainlines Ip harmonics
Helium ionization He + hnH19-H27 He+ + e-(es ) ,ed + hnIR 1D Electron spectrometer RABITT 19 21 23 25 27 Harmonic order • 15 10 5 0 -5 -10 -15 • Delay (fs) Ip Paul et al., Science 192 1689 (2001) harmonics
Helium ionization He + hnH19-H21 He+ + e-(es ) ,ed + hnIR FT(t) Amplitude FT(t) FT(t) FT(t) DC comp. 2w Freq. • 15 10 5 0 -5 -10 -15 • Delay (fs)
What is happening? Harmonic 17 Helium 3p Harmonic 15 Helium 1s Helium ionization He + hnH19-H21 He+ + e-(es ) ,ed + hnIR Argon Helium FT(t) Amplitude Foffset (rad) DC comp. 2w
What do we measure? Measured: XUV + IR ionization Measured: XUV ke 1 k ka i
Resonant ionization of helium Swodobaet al. Phys Rev Lett104, 103003 (2010) tuning to red Ionization threshold
Unbound states E • free particle: with r • potential present: shift δ with respect to free particle δ carries information about core region
δ for different potentials • short range potential: V=0, r > r0 matching conditions • real potential: , r > r0 V r0 0 => r V r0 0 r scatteringphase
Scattering phaseand photoemission time delay k • One-Photon ionization: phase of complex amplitude is scattering phase 1s • Group delay of an electron wave packet during photoemission optics: pulse propagation electron propagation: Wigner time delay
Measurement principle S modulated with harmonic-IR delay: Ar
What do we measure? Measured: XUV + IR ionization ke k ka Wigner time delay Interference: i
Compare experiment and approximation Wigner time delay Continuum-continuum contribution Approximation Experiment