1 / 9

2. Simplex Method – standard form

2. Simplex Method – standard form. Key concept : Change constraints from inequality to equality then find the solutions of the linear equations’ system. x 1 - 2x 2 ≤ 4. x 1 + x 2  3. 加上 slack variable (  0) 使得等式成立. 加上 surplus variable (  0) 使得等式成立. x 1 - 2x 2 + s 1 = 4.

nansen
Download Presentation

2. Simplex Method – standard form

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 2. Simplex Method – standard form Key concept:Change constraints from inequality to equality then find the solutions of the linear equations’ system. x1 - 2x2≤ 4 x1 + x2 3 加上slack variable ( 0) 使得等式成立 加上surplus variable ( 0) 使得等式成立 x1 - 2x2 +s1= 4 x1 + x2 –s2= 3 Maximize f= 4x1 + 3x2 Maximize f= 4x1 + 3x2 標準化 x1 + x2 + s1= 3 x1 + x2 ≤ 3 2x1 - x2 - s2= 3 2x1 - x2  3 x1 0, x2  0 x1, x2, s1, s2 0

  2. 2.1 The steps of Simplex Method a11x1 + a12x2 + … + a1nxn = b1 c1x1 + c2x2 + … + cnxn Simplex Tableau 目標函數的係數 • Transform into standard form. • Establish simplex tableau. • Choose the basic variables xB for initial feasible solution. (正常狀況下是slack var.s) • Calculate the costfjof each xj to produce objective benefit. • Calculate the pure objective benefit Cj – fj of each xj under the current xB. • Choose the max benefit producer xj*(the xj with max Cj – fj) as pivot variable. • Do the ratio test i= bi/aijof each xBi. Replace xB* (the xB having min i)with xj*. • Do pivoting (elementary row operations), such that aij* = 1 (aij*: the coefficient in xB*’s row and xj*’s column), and such that the other coefficients in xj*’s column are 0. ------ A new tableau is obtained. • Repeat from 4. until noCj – fj > 0. 技術矩陣 xB在目標函數上的係數 目標函數值

  3. Max f = 12x1 + 8x2 + 0s1 + 0s2 + 0s3 Max f = 12x1 + 8x2 5x1 + 2x2 + s1 = 150 5x1 + 2x2 ≤ 150 2x1 + 3x2 +s2 = 100 2x1 + 3x2 ≤ 100 4x1 + 2x2 + s3 = 80 4x1 + 2x2 ≤ 80 x1, x2, s1, s2, s3  0 x1, x2  0 xN xB [N|B] = [b] 2.2 Simplex method’s example step 1 step 2 step 3 step 4 step 5 step 6 step 7 pivoting Row 3 用x1換s3 step 8 step 9 Initial Feasible Solution B-1NXN + XB = B-1[b] NXN + BXB = [b] pivot Variable x1 ratio test

  4. Max f = 12x1 + 8x2 + 0s1 + 0s2 + 0s3 5x1 + 2x2 + s1 = 150 0 2 0 0 -3 2x1 + 3x2 +s2 = 100 4x1 + 2x2 + s3 = 80 x1, x2, s1, s2, s3  0 12 6 0 0 3 ∑icBibi=240 -5*Row3+Row1 -2*Row3+Row2 Row3/4 0 0 1 -0.5 2 0.5 1 0 0 0 0 1 -1.25 -0.5 0.25 50 60 20 - 30 40 cB3=12 xB3=x1 2.2 Simplex method’s example – cont’s Pivoting step 2 step 4 step 6 step 8 step 1 step 3 step 5 step 7 step 9 Loop 1 Loop 2 step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8 step 9 Cj 12 8 0 0 0 i cB xB x1 x2 s1 s2 s3 bi i 1 cB1=0 xB1=s1 5 2 1 0 0 150 2 cB2=0 xB2=s2 2 3 0 1 0 100 3 cB3=0 xB3=s1 4 2 0 0 1 80 fj 0 0 0 0 0 ∑icBibi=0 Cj-fj 12 8 0 0 0

  5. 2.2 Simplex method’s example – cont’s step 1 step 3 step 4 step 5 step 7 step 9 step 2 step 6 step 8 x1 = 5, x2 = 30, Max f =300 沒有大於0的值

  6. 2.3 Summary for simplex method Maximize f= C1x1 + C2x2 + … + Cnxn a11x1 + a12x2 + … + a1nxn = b1 a21x1 + a22x2 + … + a2nxn = b2 …… ai1x1 + ai2x2 + … + ainxn = bi ……am1x1 + am2x2 + … + amnxn = bm x1, x2, …, xn 0

  7. Max f = 1.5xa + 1.2xg Max f = 1.5xa + 1.2xg 1.5xa + 2xg ≤ 1200 1.5xa + 2xg + s1 = 1200 3xa + 3xg ≤ 2100 3xa + 3xg + s2= 2100 6xa + 3xg ≤ 3600 6xa + 3xg + s3= 3600 xa, xg  0 xa, xg, s1, s2, s3 0 2.3.1 simplex method example again (example from Topic 1) 標準化 800 700 600 6

  8. 2.3.1 simplex method example again (cont’) – -1/4 300 -1/4 0 (-1.5)+ * 200 0 3/2 -1/2 300 (-3)+ ? 1200 1/6 1 1/2 600 6 ∑icBibi=900 0.75 1.5 0.25 1.5xg +s2-0.5s3= 300 s2= 300-1.5xg+0.5s3 s2 /1.5= 300/1.5-xg+(0.5/1.5)s3 xg= 200-2s2 /3 +s3/3 <<< i=2 xg= 1200-2xa+(1/3)s3<<< i=3 s2對目標函數值最沒貢獻,所以換成有貢獻的xg 0 0.45 -0.25 ∑icBibi=900 ∑icBibi=990

  9. fj 與Cj-fj是什麼? 2x1 + 3x2 + s2 = 100 s2= 100 - 2x1 - 3x2 5x1 + 2x2 + s1 = 150 x1每增加1 每個s2就會減少2 s1= 150 - 5x1 - 2x2 x1每增加1 每個s1就會減少5 4x1 + 2x2 + s3 = 80 s3= 80 - 4x1 - 2x2 x1每增加1 每個s3就會減少4 fj 是xj生產basic var.s的單位成本 Cj-fj是xj當basic var.s後可創造的單位利益

More Related