550 likes | 699 Views
LONG RANGE CHARGE TRANSPORT IN LARGE SCALE CHEMICAL SYSTEMS AND DNA. ELECTRON TRANSFER -. FROM. ISOLATED MOLECULES TO. BIOMOLECULES. ELECTRON TRANSFER PROCESSES. CONSTITUTE UBIQUITOUS AND.
E N D
LONG RANGE CHARGE TRANSPORT IN LARGE SCALE CHEMICAL SYSTEMS AND DNA
ELECTRON TRANSFER - FROM ISOLATED MOLECULES TO BIOMOLECULES ELECTRON TRANSFER PROCESSES CONSTITUTE UBIQUITOUS AND FUNDAMENTAL PHENOMENA IN CHEMISTRY , PHYSICS AND BIOLOGY. NONRADIATIVE PROCESSES ENCOMPASSING ELECTRON / HOLE - TRANSFER IN : LARGE MOLECULES CLUSTERS / NANOSTRUCTURES CONDENSED PHASE INTERFACES PROTEIN / DNA PROCESSES : CHARGE SEPARATION MIGRATION RECOMBINATION LOCALIZATION AS WELL AS CHARGE TRANSPORT AMONG A LARGE NUMBER OF CONSTITUENTS .
An “artist’s view” of metal-ammonia solution. A lump of sodium dissolving in pure liquid ammonia produces a blue solution in which each Na atom undergoes the ET process Na Na+ +eam to form the solvated electron in ammonia. Small pieces of metal ejected into the solution result in the dark blue streaks.
Charge • Transport • Large Scale • Chemical • Systems • Dendrimers • Pieces of • Graphite • DNA • Polymers Charge Transport on the Nanoscale Charge Transfer between Nanostructures CHARGE TRANSFER &TRANSPORT Nanoelectronics • Molecular Electronics • Supramolecules • Molecular Wires • Molecular Materials • for Electronics and • Optoelectronics • Single Molecule • Electronic Devices • Clusters/Nanostructures • / Nanotubes….. • Nanowires • Nanomaterials • for Electronics and • Optoelectronics • Single Electron • Nanodevices • Coulomb Blockade/ • Transistor/ Rectifier
MOLECULAR WIRESAND NANOWIRES NANOSTRUCTURES, WHOSE SPATIAL CONFIGURATION, ENERGETICS, NUCLEAR AND ELECTRON DYNAMICS PROMOTE LONG-RANGE CHARGE TRANSPORT
THE WORLD OF MOLECULAR AND NANOWIRES 1. NANOWIRES (NANOSCALE IN 2D) d • METALLIC • T = 1 • Transmittance g = h/2e2 Conductance Quantization (Landauer) • SEMICONDUCTOR • Confinement Effects BAND GAP 2. MOLECULAR WIRES • SUPEREXCHANGE MEDIATORS • ‘VIBRONIC’ WIRES • BAND TRANSPORT WIRES
MOLECULAR WIRES ALKENES, AROMATIC HYDROCARBONS, SINGLE MOLECULE OR SUPRAMOLECULE, POLYPEPTIDES, PROTEINS, SELF-ASSEMBLED LAYERS, POLYMERS, DNA • (1) INCOHERENT ONE-STEP OR • MULTISTEP HOPPING • SUPEREXCHANGE MEDIATOR • MULTISTEP HOPPING IN • VIBRONIC WIRES • THERMALLY ACTIVATED INJECTION • AND HOPPING IN VIBRONIC WIRES ENERGETIC CONTROL (2) COHERENT BAND TRANSPORT
THE ROLE OF BRIDGES OFF-RESONANCE & RESONANCE COUPLING (A) OFF - RESONANCE COUPLING SUPEREXCHANGE D+B-A DBA D+BA- UNISTEP ET (B) RESONANCE COUPLING } VR DBA D+B-A D+BA- MULTISTEP ET COHERENCE LENGTH SEQUENTIAL / B A D
( 1 9 9 8 ) J . J O R T N E R e t a l . P r o c . N a t l . A c a d . U S A E N E R G E T I C S O F I O N - P A I R S T A T E S C O N T R O L S E T R O U T E D * A B ENERGETIC CONTROL BY SEQUENCE SPECIFICITY OF BRIDGE IS UNIVERSAL FOR LARGE MOLECULAR SCALE SYSTEMS FOR PROTEINS AND DNA & ‘ POOR’ ‘GOOD’ MLECULAR VIBRONIC WIRES S U P E R E X C H A N G E U N I S T E P O F F - R E S O N A NCE S E Q U E N T I A L R E S O N A NCE VIBRONIC 2 T Y P E S O F M O L E C U L A R W I RES ‘POOR’ ‘GOOD’ R E S O N A N C E S U P E R E X C H A N GE ( V I B R O N I C ) C O U P L I N G O F F - R E S O N A N C E C H A R G E I N J E C T I O N T O B R I D G E U N I S T E P D I F F U S I V E ( O R C O H E R E N T ) E X P O N E N T I A L C H A R G E T R A N S P O R T M U L T I S T E P ALGEBRAIC
& ‘ POOR’ ‘GOOD’ MLECULAR VIBRONIC WIRES E N E R G E T I C S O F I O N - P A I R S T A T E S C O N T R O L S E T R O U E T R E S O N A N C E ENERGETIC CONTROL BY SEQUENCE SPECIFICITY OF BRIDGE IS UNIVERSAL FOR LARGE MOLECULAR SCALE SYSTEMS FOR PROTEINS AND DNA ( 1 9 9 8 ) J . J O R T N E R e t a l . P r o c . N a t l . A c a d . U S A A B D * S U P E R E X C H A N G E U N I S T E P O F F - R E S O N A NCE S E Q U E N T I A L R E S O N A NCE 2 T Y P E S O F M O L E C U L A R W I RES ‘GOOD’ ‘POOR’ S U P E R E X C H A N G E ( V I B R O N I C ) C O U P L I N G O F F - R E S O N A N C E C H A R G E I N J E C T I O N T O B R I D G E U N I S T E P D I F F U S I V E ( O R C O H E R E N T ) C H A R G E T R A N S P O R T E X P O N E N T I A L M U L T I S T E P ALGEBRAIC
DONOR ACCEPTOR O O WIRE N N C8H17 O O WIRE=1. 2. . R=2 - ETHYLHEXYL RO 3. RO RO 4. RO RO 5. RO W.B.DAVIS, W. A. SVEC, M.A. RATNER & M. R. WASIELEWSKI NATURE (1999)
HOLE TRANSPORT INDNA B. GIESE AND M.E.MICHEL-BEYERLE (1999) G+ BRIDGE GGG 20 40 10 R / A 2 1 4 N 3 2 ln krel 1 0 1.5 0 0.5 1.0 ln N C G C G G C G C T A C G A T G C G C A T T A A T T A C G A G C G A T A T C G A T A T G C C G A T A T A T A T C G+ C G+ 10 20 R / A 40 C G+
INJECT e ELECTRON TRANSPORT IN DNA • ET VIA T NUCLEOBASE • M. BIXON, J. JORTNER, M. E. MICHEL-BEYERLE • et al. PROC. NATL. ACAD. SCI. USA (1999) • HOPPING • TRANSPORT B. GIESE (2003) 20 10 5 kET/ktr =1.1 2 1 2 3 n 1
E(Q) {D+A-} VIBRONIC MANIFOLD V DA ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ Q QUANTIFYING ENERGETIC CONTROL DE O DE < O UNISTEP SUPEREXCHAGE MULTISTEP HOPPING kCT = k n- kCT = ksuper INDIVIDUAL HOPPING RATES SUPEREXCHANGE RATE ELEMENTARY RATES DESCRIBED BY THEORY OF CHARGE TRANSFER DYNAMICS CHARGE TRANSFER KINETICS J. FRANCK (1949) R. A. MARCUS (1956) V. LEVICH (1965) CHARGE TRANSFER DYNAMICS (1974-)
ET RATE V2F V ELECTRONIC COUPLING CHARGETRANSFER AND TRANSPORT IN ORGANIZED SYSTEMS • MOLECULAR LARGE - SCALE • PHOTOSYNTHETIC RC • POLYNUCLEOTIDES AND DNA STRUCTURE FOCUSING ON : BRIDGING INGREDIENTS ELECTRONIC STATES ENERGETICS IONIC STATES F STRUCTURAL NUCLEAR FC FACTORS CONTROL NUCLEAR DYNAMICS V- ELECTRONIC COUPLING EXCHANGE / SUPEREXCHANGE DA SEPARATION / ORIENTATION BRIDGES
ET RATE V2F F - NUCLEAR FRANCK - CONDON FACTOR ENERGETICS COUPLING TO INTRAMOLECULAR VIBRATION COUPLING TO MEDIUM MODES ENERGETIC VIBRONIC MEDIUM CONTROL
THE ELECTRONIC COUPLING CHARGE TRANSFER / TRANSPORT DNA IN SOLUTION MOLECULAR ELECTRONICS OF DNA A. A. Voityuk, N. Rösch, M. Bixon, J. Jortner, J. Phys. Chem. 104B, 1661 (2000) J. Chem. Phys. 114, 5614 (2001)
V=AebR ke-R b= 0.44A-1 =0.88A-1 =0.7-0.9A-1 (LEWIS, WASIELEWSKI, GIESEL, MICHEL-BEYERLE) HOLE HOPPING IN G+(X)mG DUPLEX X=T,A 103 GTG 102 1 GTTG 2 CALCULATED 10 GTTTG WITH SOLVENT DEPENDENT ENERGY GAP 3 V(cm-1) GTTTTG 1 EXPERIMENTAL (1) GAG (LEWIS, WASIELEWSKI) (2) St-AAG (LEWIS, WASIELEWSKI) (3) m=3 (HARRIMAN) 10-1 10-2 4 3 2 0 1 m
BEYOND ENERGETIC CONTROL k k k X X X X k k k k1 kt Ea k-1 E k-t ksuper N X UNITS E 0 d a • 2 PARALLEL MECHANISMS • SUPEREXCHANGE • THERMAL ACTIVATION AND • INTRABRIDGE HOPPING • THERMALLY-INDUCED HOPPING (TIH) • ksuper exp(-RoN) • kTIH K k/N2 • Nx • CROSSOVER SUPEREXCHANGE TIH
SUPEREXCHANGE |Vsuper|2 TIH |V eff |2 -3 10 -4 10 TIF -5 10 -6 10 nx -7 10 -8 nx 10 -9 10 1 2 3 4 5 6 n
Expt. V. Sartor, E. Boone, G. B. Schuster J. Phys. Chem. (2001) Theory J. Jortner, M. Bixon, N. Rosch. J. Phys. Chem. (2002) 1.0 0.5 0.2 N expt. calc. 2 0.1 5 N • N k/kd • 15 • 4 • 5 • 4 1 1 1 Invariance for N > 3
Direct observation of hole transfer through DNA by hopping between adenine bases and by tunneling Bernd Giese , Jérôme Amaudrut, Anne-Kathrin Köhler, Martin Spormann & Stephan Wessely NATURE | VOL 412 | 19 JULY 2001 , pp 318-320
T T T T k k k A A A A E(G-T) k k k k1 k-1 kt k-t Et G ksuperexchange E GGG
Theoretical Nx for Superexchange TIH
RECENT HISTORY GIESE’S KINETIC ARGUMENT HAS TO BE EXTENDED DRIVEN BY GATING MECHANISMS
T T T T k k k A A A A E(G-T) k k k k1 k-1 Et kt k-t G ksuperexchange E GGG First order model: regular, homogeneous bridge
THERMALLY INDUCED HOPPING (TIH) First order model-regular homogeneous bridge It is impossible to construct a plausible consistent set of parameters that will give a reasonable fit to the experiment ! The model is too crude ; it should be modified to include finer details of the real system.
Energetics of Transient Hole Trapping In an A T n A+ T 3’ A 5’- C T G AA+A TT T AA+A TT T AA+A TT G CA+A GT T AA+A TT T Bridge Edge Groups Provide Energetic Barriers Energetic Data : A. Voityuk, N. Rösch, M. Bixon, J. Jortner, Chem. Phys. Lett. (2000) - E(eV) 0.7 0.6 0.5 0.4 CAA GTT 0.3 0.2 AC C TG+G 0.1 0
T T T T k-2 k2 k2 k-2 k k k A A A A E(G-T) k k k k1 k-1 kt k-t Et G ksuperexchange E GGG
ENERGETIC GATING BY SHALLOW TRAPS 103 Superexchange 102 R 101 TIH – two state bridge 100 TIH – homogenous bridge 10-1 0 25 5 10 20 15 n PARAMETERS Energies Rate constants (Relative values k=1)
DNA • CHARGE HOPPING BETWEEN • LOCALIZED STATES • INCOHERENT HOPPING • TRANSPORT • EACH HOPPING STEP • INVOLVES ELEMENTARY • CHARGE TRANSFER BETWEEN • IDENTICAL NUCLEOBASES • QM CT THEORY V 2 F • MECHANISM FOR HOLES IN DNA • ‘RESTING STATES’ • T I H • ‘MOLECULAR POLARON’ • (G/A)(+) (T/C)(-) • MODEL FOR HOLES AND ELECTRONS • TRANSPORT • IN DNA / SOLUTION G G - - - + A A MOLECULAR VIBRONIC WIRES +
HOPPING INCOHERENT TRANSPORT IN MOLECULAR WIRES • UNISTEP SUPEREXCHANGE • MEDIATOR • MULTISTEP HOPPING • IN VIBRONIC WIRES • TIH IN VIBRONIC WIRES • WHAT ABOUT COHERENT • BAND TRANSPORT ?
+ Hole Conduction along Molecular Wires:-Bonded Silicon Versus-Bond-Conjugated Carbon By Ferdinand C. Grozema, Laurens D.A. Siebbeles, John M. Warman, Shu Seki, Seiichi Tagawa, and Ulrich Scherf The molecular structures of the polymers investigated in the present work together with their pseudonyms (left) and one- dimensional, intrachain hole mobilities (hp+) [cm2/Vs] (right) determined from the experimental data. Adv. Mater. 2002, 14, No. 3, February 5
J. M. Warman et. al. Nature 392, 54 (1998) Adv. Mat. 14, 228 (2002) Poly- Phenylene Vinylene +=0.43cm2/Vsec In a Series of Polymer Chains DEH-PF, MEH-PPV, MELPP Hole Mobility +=0.2 - 0.8 cm2 / Vsec Charge Mobility in 2D Finite Graphite K. Müllen, 6th International Symposium of Volkswagen-Foundation (2003) _= 1 cm2/Vsec WEAK T DEPENDENCE Technology: Field Effect Transistors Light Emitting Diodes Highly Mobile Electrons and Holes in SemiconductingPolymer Chains
1cm2 / Vsec Diffusion Coefficient IMPLICATIONS OF HIGH MOBILITY Distance Scale ‘Long Range’ Transport Ultrashort Time Scale ‘Long Range’ Transport For L = 50Å t = L2/2D t = 10ps NOTE: For Hopping Transport, ET Theory Gives Beyond Hopping Transport ! Å
50 - 100Å) Ultraslow (µs) and Ultrafast (ps) Charge Transport in Molecular Wires Electronic Coherence in Band Transport scatt Time For Memory Loss of Electronic Coherence - Compare Bandwidth B=2V V With a Coherent Band Transport Incoherent Hopping Transport Mean Coherent Band Transport Strong Scattering Free Path a – ‘Lattice’ Spacing Long – Range (L
scatt Rate of Memory Loss HOPPING INCOHERENT TRANSPORT B=2V Band Width BAND STRONG SCATTERING B A N D C O H E R E N T T R A N S P O R T V a CHARGE TRANSPORT DOMAINS IN LARGE SCALE SYSTEMS a Mean Free Path
2•10-5 Mobilities µ for Ultraslow (µs) and Ultrafast (ps) Charge Transport V V k cm2/Voltsec cm2/Voltsec Experiment Experiment
ELECTRIC PROPERTIES OFDNA • CONJECTURES AND CONFLICTING • REPORTS ON: INSULATOR • UNDOPED DNA SEMICONDUCTOR • METALLIG • SUPERCONDUCTING • CURRENT THEORY FOR UNDOPEDDNA: • LARGE GAP , NARROW BANDWIDTH • SEMICONDUCTOR • W+ , W- 0.01 – 0.1eV • EG 3 - 4eV • ROLE OF CHEMISTRY • SUBSTITUTIONAL DISORDER • TIH IN DNA • (TIH) • TIH GAP • B. GRUNER et al., PHYS. REV. LETT. 85,1564 (2000) • DIAGONAL DISORDER AND LOCALIZATION • OFF – DIAGONAL DISORDER • CHARGE INJECTION • CONTROL DOPING W- CB EG VB W+ SEQUENCE POLY SPECIFICITY G DNA LOCALIZED STATES+ HOPPING + TIH A+ ‘BAND’ G+ ‘BAND’ 0.25eV 0.3eV ~ ~
MOLECULARELECTRONICSOF DNA • ELECTRONICPROPERTIES OF A BASIC • BIOPOLYMER • DYNAMICS, RESPONSE AND FUNCTION • OF NANOSTRUCTURES AND BIOSENSORS • DNA BASED MOLECULAR ELECTRONICS • UTILIZING UNIQUE FEATURES OF • RECOGNITION • ASSEMBLY • SPECIFIC BINDING OF NUCLEOBASES • DNA DUPLEXES • AS CONDUCTIVE BLOCKS • OR AS INSULATING / CONDUCTING • TEMPLATES FOR ASSEMBLY OF OTHER • NANOELEMENTS, • E.G., METAL CLUSTERS • ‘THEORETICIANSDREAMS’ • DYNAMICS OF CHARGE TRANSFER • AND TRANSPORT IN DNA