1 / 45

Colored SUSY and R-hadron physics in the ATLAS detector

Colored SUSY and R-hadron physics in the ATLAS detector. QCHS-06. Rasmus Mackeprang, rasmack@nbi.dk. ~. t. Outline. SUSY reminders using SPS1a as an example Light scenario R-hadron phenomenology R-hadron measurements. 0. Â. 1. >. >. >. m. m. m. m. 0. ~. 0. ~. ~. ~. l.

nara
Download Presentation

Colored SUSY and R-hadron physics in the ATLAS detector

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Colored SUSY and R-hadron physics in the ATLAS detector QCHS-06 Rasmus Mackeprang, rasmack@nbi.dk

  2. ~ t Outline • SUSY reminders using SPS1a as an example • Light scenario • R-hadron phenomenology • R-hadron measurements

  3. 0 Â 1 > > > m m m m 0 ~ 0 ~ ~ ~ l q A G V 0 4 1 0 0 Â Â ¡ 2 1 m m e = = = 1 0 0 : 2 ¯ 1 0 0 t > a n ¹ = ; Basic SUSY phenomenology • Using SPS1a • Defined in mSUGRA using parameters: • SUSY spectrum has so we have the squark decaying through a neutralino and a slepton to the LSP which is stable and escapes the detector.

  4. ~ ¨ ¨ 0 0 § § l l l l ~ ~ ~ q  q q  q ! ! ! L 2 1 f R n e a r n e a r a r Snowmass paper ISAJET 7.58 Cascade decays • Sequential decay: 100 % 12.1 % ~32 %

  5. 0 Â 1 m m m m l l l l l l q q q ; ; ; 1 2 Kinematic variables • As the escapes the detector one may form these invariants: • Note that we don’t know ”near” from ”far” lepton  Maximize/minimize in combination choice.

  6. 2 2 2 2 ( ) ( ) ¡ ¡ m m m m 0 ~ ~ 0 ~ ~ l l   d 2 R R ( ) e g e 2 1 m = l l 2 m ~ l R 2 2 2 2 ( ) ( ) ¡ ¡ m m m m 0 0 0 ~ ~ ~ ~ q L    d 2 ( ) e g e 2 2 1 m = l l 2 q m 0 ~  2 2 2 2 2 ( ) ( ) ¡ ¡ m m m m 0 0 ~ ~ ~ ~ q l d L   2 e g e R ( ) 2 2 m = l i 2 q m n m 0 ~  2 2 2 2 2 ( ) ( ) ¡ ¡ m m m m 0 0 ~ ~ ~ ~ q l L   d 2 R ( ) e g e 2 1 m = l 2 q m a x m ~ l R Kinematic edges and masses Choose to minimize/maximize

  7. F l f f A j i i t t t t e a s o u r e s s a s y n g G V G V G V 1 5 0 1 0 0 5 0 > > > p e p e p e 1 2 3 t t t ; ; ; ; ; F M E G V 6 0 0 + + + + > ´ p p p p e f f i 1 2 3 4 t t t t t e m s s ; ; ; ; ; ( ) F E G V M 1 0 0 0 2 > m a x e f f i t m s s e ; : ; ( ) F l d l f h T i i t t t t w o s o a e e p o n s n o ¿ o o p p o s e c a r g e ( ) b ° h O S S F i t t u s a m e a v o u r w ( ) ( ) l d l G V G V 2 0 1 0 > > p e a n p e t t Production and analysis cuts • Events produced w PYTHIA 6.2 (100 fb-1) and run through a fast detector simulation • Analysis cuts:

  8. d l i t t t ( ) l l e g e n o m n a r e c s y s s a 7 7 0 7 7 7 7 0 2 4 0 0 8 0 0 5 § § m : v s : . : : : Lepton-lepton invariant mass • Before and after OS-OF lepton background subtraction: ATLAS Prelim. Nominal value OS-SF SUSY+SM OS-OF SM

  9. d l i t t t ( ) l l e g e n o m n a r e c s y s s a 4 3 1 1 4 3 1 3 4 3 2 4 § § m q : v s : . : : : qll-edge ATLAS Prelim.

  10. l l M M i i i t t t t t t ( ( ) ) l l a n x n n o o m m n n a a r r e e c c s s y y s s s s a a 3 3 0 8 2 0 1 3 3 3 0 7 0 9 8 4 3 3 0 8 1 1 5 8 § § § § m m q q : : v v s s : : . . : : : : : : ql ATLAS Prelim. ATLAS Prelim.

  11. h h i l i i 0 g ( ) ( ) l m a x m a x o w m n m n ~ ¡ m m m m m m m m  L 1 l l l l l l l l l b l ; ; ; ; ; ; ; q q q q 2 h " # t 0 0 ( ) ( ) ( ) e o r y e x p ( ) m a x ~ m a x ~ ~ ~ 0 9 9 E E ¡ £ ¡ m  m m g m  m 4 1 l l X j j ; ; : ; : : : ¿ ¿ 2  = e x p ¾ j j Mass measurements • Measure a number of parameters and constraints: • Minimize chisquare function:

  12. ¢ ¢ 4 8 4 8 m m ~ 0 ~ l . . Â R 1 ¢ ¢ 4 7 8 7 m m 0 ~ ~ q . . L Â 2 ¢ ¢ 7 5 8 0 m m ~ ~ b g . . 1 ¢ ¢ 1 1 8 7 9 m m ~ ~ b q . . R 2 ¢ ¢ 5 0 5 1 m m ~ 0 ~ l . . Â L 4 Atlas Performance Estimate • Perform 105 ”Atlas experiments” and study the RMS of the resulting distributions of parameters: All errors in GeV. L = 300 fb-1

  13. ~ t ~ t Light Analysis • Cosmological inspiration • Discard the demand for unification (no assumptions on SUSY breaking) • Require matter-antimatter asymmetry to be generated at EW scale (CPV + light ) • Fix MSSM parameters using cosmological observables.

  14. ( ) M S S M P G V t a r a m e e r s e : S U S Y S t p e c r u m : d l 1 2 1 0 0 0 0 t s n g e n s c a a r s ~ 1 3 7 . . . t 1 d l 3 1 0 0 0 t r g e n s e p o n s ~ . . 1 5 1 0 t 2 ( ) Q 1 5 0 0 m 3 ~ 9 4 8 g ~ ( ) 0 t m R ~ ~ 1 0 0 0 0 ~ ¹ e » ( ) b 1 0 0 0 ; m R 0 ~ 5 8 Â A 0 1 b e ¹ ¿ ; ; ; 0 ~ 1 1 2 i ¼ Â A 6 4 3 2 - e x p t 2 + 1 1 1 M 6 0 Â 1 1 h 1 1 6 M 1 2 0 2 i ¼ 4 0 0 ¹ e x p 2 ¯ 7 t a n ( ) M A 1 0 0 0 Benchmark Point • LHS-2 (Les Houches 2005)

  15. Basic Phenomenology • Missing transverse energy • Kinematics doesn’t match t / W production • Jets too soft • Invariant mass combinations don’t add up. (W’s are virtual) 2 jets 2 b-jets 1 lepton

  16. Basic Cuts • One isolated e/ with pt > 20 GeV • Et,miss > 20 GeV • 4 jets with pt > 25 GeV (2 with pt > 35 GeV) • 2 b-jets Efficiencies: Signal: 0.47 % tt: 3.3 % Wbbj: 3.1 % b/s ratio ~ 15  (but soft QCD is gone) • Fast simulation study on 1.8 fb-1

  17. Excluding Ws c Demanding m(jj)min<60 GeV removes a lot of W background  b/s ~ 10 ATLAS ATLAS Background Signal GeV GeV

  18. ATLAS ATLAS M(bl) 1.8 fb-1 M(bjj) 1.8 fb-1 GeV GeV After background subtraction Next step would be fitting masses but that is a somewhat longer story...

  19. R-hadrons • Scenarios with metastable squarks/gluinos • Coloured SUSY particle binds with quarks to form R-(parity-stable) hadrons. Hence the name... • Possible scenario is split-SUSY: • Abandon hierarchy problem • SUSY broken far above the TeV scale  heavy scalars, light Higgs and light fermions • Long lived gluino

  20. Physics model for R-hadrons Interactions of • Quark system interacts • Gluino is ”just” a reservoir of kinetic energy • Interactions are thought to be pomeron / reggeon mediated: Figure: A.C. Kraan

  21. Basic Phenomenology • R-hadrons can change charge in hadronic interactions. • R-mesons tend to acquire baryon number • Cross section ensures hadronic interactions in calorimeter. • A pure sample of R-hadrons can be selected basically by requiring opposite sign tracks in ID and muon system. • Simulation implemented in Geant3 and Geant4

  22. Energy loss per collision 300 GeV/c2 gluino in iron: ATLAS Prelim. Geant4

  23. Triggering 300 GeV/c2 gluino • Charged R-hadrons in muon system will pass the single- 6 GeV trigger at even very moderate kinetic energies. • β > 0.7 satisfies timing. Losses: 25 % @ 300 GeV/c2 60 % @ 1 TeV/c2 Additional O(50%) loss from hadronic interactions in muon system ATLAS Prelim. 1 TeV/c2 gluino

  24. Seeing is believing... • That’s QCD all right • One high-pt track • Nothing on the other side • Signal back-to-back in the muon system (10 GeV track cut)

  25. ¹ p T I D j j p T Charge Flipping Quantified • Split SUSY scenario: (2 fb-1) • for negative ID track. R-hadron does not ”remember” initial charge. ATLAS Prelim.

  26. L T T i ¡ = i 0 ¯ c f T D i i t t : r m e i f d T T i i i t t t t : m e r o m c r e a o n o e e c o n 0 . R-hadron Mass Measurement • Gluino does not decay  Mass measurement requires β-measurement. • Use drift time in muon chambers:

  27. ¯ p m c ° = β-measurement • Use β as an assumption in track fit. • Divide events into momentum intervals • Minimize chi-square as: • Use that to fit the mass. ATLAS Prelim.

  28. Fitted mass • Input gluino mass was 300 GeV/c2 Mass scale can be determined to O(5-10%) using simple and generic methods. ATLAS Prelim. Fits not always stable

  29. Summary • The Atlas detector is sensitive to a broad spectrum of SUSY phenomenologies • Statistics of one year of nominal running should suffice for many phenomenologies • Knowledge of SM background (and thus of QCD) of paramount importance • We have yet to find the elusive SUSY • But hope prevails

  30. Backup slides

  31. ATLAS layout

  32. Trigger & luminosity • Low luminosity: 1033 cm-2s-1 10 fb-1yr-1 • High luminosity: 1034 cm-2s-1 100 fb-1yr-1 Trigger rates: • Raw: 23 collisions / 25 ns (40 mHz) • LVL1: 75 kHz • HLT: ~100 Hz

  33. ~ ¨ ¨ 0 0 § § l l l l ~ ~ 0 0 0 ~ ¨ § l l X ~ ~ ~ ~ q  q q  q ! ! ! L q  q  q  q ! ! ! 2 1 f R L n e a r n e a r 2 1 1 a r Cascade decays • Sequential decay: • Branched: Large m0 excludes decay through slepton

  34. 2 2 2 2 ( ) ( ) ¡ ¡ m m m m 0 ~ ~ 0 ~ ~ l l   d 2 R R ( ) e g e 2 1 m = l l d d 2 p e g e e g e = m 2 ~ < < l m m m R l l l l l l 2 2 2 2 ( ) ( ) ¡ ¡ m m m m ~ ~ 0 0 0 ¼ ( ) ~ ~ ~ µ l f i q > L    d 2 n - r a m e ( ) l l e g e 2 2 1 2 m = l l 2 q m 0 ~  2 2 2 2 2 ( ) ( ) ¡ ¡ m m m m ~ 0 0 ~ ~ ~ q l d L   2 e g e R ( ) 2 2 m = l i 2 q m n m 0 ~  2 2 2 2 2 ( ) ( ) ¡ ¡ m m m m ~ 0 ~ 0 ~ ~ q l L   d 2 R ( ) e g e 2 1 m = l 2 q m a x m ~ l R h 2 2 2 2 2 2 2 t ( ) [ ( ) ( ) ( ) r e s + ¡ ¡ m m m m m m m = 0 0 ~ ~ 0 l l ~ ~ ~ ~ l l q q L    R R 2 2 1 q 2 2 2 2 2 2 2 4 2 ( ) ( ) ( ) 2 2 1 6 ¡ ¡ + + ¡ m m m m m m m m m 0 ~ 0 ~ ~ 0 0 ~ 0 ~ ~ ~ ~ ~ q l l l L      2 R R R 2 1 2 1 2 2 2 2 2 2 2 ( ) ( ) ] = ( ) 2 4 + ¡ ¡ m m m m m m m ~ ~ 0 0 0 0 ~ ~ ~ ~ ~ l l q L     R R 2 2 1 2 Edges and thresholds Choose to minimize/maximize

  35. d h l l T i i t t t t t t ( ( ) ) l l l l e g r e e s n o n m o m n a n a r e r c e c s y s s y s s s a a 4 2 3 0 1 3 1 0 4 2 3 0 1 4 3 6 4 2 3 0 2 2 4 8 § § § § m m q q : : v v s s : : . . : : : : : : qll Edge and threshold

  36. t t t s y s d l E N F i i s a t g e o m n a ¾ ¾ l E ¡ s c a e d ( ) l l e g e 7 7 0 7 7 7 7 0 2 4 0 0 8 0 0 5 m . . . . d ( ) l l e g e 4 3 1 1 4 3 1 3 4 3 2 4 m q . . . . d e g e ( ) l 3 0 2 1 3 0 0 8 3 0 1 5 m q i . . . . m n d ( ) l e g e 3 8 0 3 3 7 9 4 3 8 1 8 m q . . . . m a x h t ( ) l r e s 2 0 3 0 2 0 4 6 2 0 2 8 m q . . . . SPS1a • Four equations, four masses (in case of universal squark masses)

  37. Snowmass paper ISAJET 7.58 G V 5 4 3 0 m e = ~ d : L G V 5 3 7 2 m e = ~ u : L Squark masses @ SPS1A

  38. T V 1 [ ] G V G V > 1 2 0 1 7 0 m e 2 ~ ~ ~ m e e ~ t t t t R ; Stop Constraints (Strong 1st order phase transition at EW scale) • mostly righthanded (LEP) • (light Higgs limit)  will be produced at the LHC.

  39. ( ) b G V L S P i 6 0 1 0 5 < < m  e n o ; ( ) b G V L S P i ~ 6 0 ( ) ( ) < G V 2 5 t m  e n o ¡ < m m  e ; Dark Matter Constraints Yellow allowed, green favoured. (Neutralinos supply dark matter) Higgsino LSP LEP excuded

  40. Signal vs Background • Difference in shapes in s/b • Background shape and normalization crucial. t Signal Wbb

  41. R-hadrons • Fits a bit unstable  Need unbinned method

  42. R-hadrons • Estimate of mass scale error

  43. R-meson to baryon conversion • R0-mesons with 300 GeV gluino sent through iron • All mesons end up as baryons.

  44. Search Strategies • A number of quality cuts can be applied to the tracks used, and R-hadron likeness cuts imposed. • Sensitivities exceeding the 5  level to metastable gluinos up to 1 TeV in mass has been demonstrated.

  45. R-hadrons • Assuming flat xsec (12 mbarn per light quark) • Assume even weights • Using phase space function to ensure asymptotic limits for 2  2 vs. 2  3. • Using parameterised cascade treatment already in Geant4. Figure: A.C. Kraan

More Related