170 likes | 380 Views
Hideaki Kasai Department of Precision Science and Technology & Applied Physics Osaka University, Japan. 「コンピューティックスによる物質デザイン:複合相関と非平衡ダイナミクス」研究会 2012年3月16日(金)-3月17日(土) 東京大学本郷キャンパス Computational Materials Design –from basics to applications-.
E N D
Hideaki Kasai Department of Precision Science and Technology & Applied Physics Osaka University, Japan 「コンピューティックスによる物質デザイン:複合相関と非平衡ダイナミクス」研究会 2012年3月16日(金)-3月17日(土) 東京大学本郷キャンパス Computational Materials Design –from basics to applications-
Spin Manipulation at Surfaces 1. Kondo Effect and Influence of the RKKY Interaction (Magnetic Dimer, Trimer)2. Surface-Spintronics Device Magnetic Layer (Fe) on Non-Magnetic Substrate (Cu)3. Catalyst for Oxygen Reduction Reaction Non-Magnetic Layer (Pt) on Magnetic Substrate (Fe) Effect of Oxygen Vacancy4. Resistance Random Access Memory
Computational Materials Design®(CMD®) Experiment • 触媒デザイン • 反応プロセスデザイン AB INITIO CALCULATIONS FUNCTIONAL VERIFICATION ANALYSIS of RESULTS VIRTUAL TEST MATERIAL PHYSICAL MECHANISM VERIFICATION QUANTIZATION of MECHANISM
Dr.Emi Minamitani南谷英美 Magnetic atoms on metal surface Kondo effect & local spin interaction Real space observation of Kondo effect and RKKY interaction Numerical Renormalization Group
Results, the separation dependence of the RKKY interaction Spin-spin correlation function shows the oscillatory behavior due to the RKKY interaction in 2D. The strongest FM interaction at kFR12=0.9 The strongest AF interaction at kFR12=2.5 FM AF Parameters are set as
Magnetic adatoms on a metal surface: • Kondo effect at a single adatom • + • RKKY, and direct interaction between adatoms • Dimer- • Magnetic order? • Frustration? • –Trimer- Nghiem Thi Minh Hoa D3
The trimer problem Yosida-Kondo dominant regime Magnetic frustration regime N. T. M. Hoa, W. A. Diño, and H. Kasai: J. Phys. Soc. Jpn. 81 (2012) 023706
Transition in the trimer system Critical crossover N. T. M. Hoa, W. A. Diño, and H. Kasai: J. Phys. Soc. Jpn. 81 (2012) 023706.
博士論文 表面ナノ構造の磁性と伝導性に 関する理論的研究(2005) Magnetic and Transport Properties of Surface Nano-Structures Dr. Tomoya Kishi (KOBELCO, Kobe Steel Co.)
Surface state Surface state Fe Thin Film on Cu(111) Spin polarized GGA EF Majority spin Minority spin
Surface Spintronics Device (PCT2004) 特願2003-179726号, Ballistic Spin Circuit (BSC) ①膜厚が数原子層分の鉄原子薄膜、 ②鉄原子薄膜を支える(111)面を上面にした銅薄膜 ③銅薄膜支持バッファー層基板、 ④スピン伝導ドレイン端子、 ⑤スピン伝導ソース端子、 Spin Switch Device Spin Memory Device Spin Flip
SURFACE-SPINTRONICS DEVICE Patent No.: US 7,432,573 B2 Date of Patent: Oct. 7, 2008 Inventors: Hideaki Kasai, Osaka (JP); Hiroshi Nakanishi, Osaka (JP); Tomoya Kishi, Hyogo (JP) PCT No.: PCT/JP2004/009226 CMD: Case Study
Quantum Simulation and Design of Novel Catalytic Materials for Energy Applications 新規高効率エネルギー技術開発のための量子シミューレション・マテリアル・デザイン anions/noble metals Nanostructures/CNT O2 bimetallic surfaces “I am working on gas-metal surface interaction and diffusion in nanostructures/CNT composites.” Mary Clare Escaño D3
O2 dissociative adsorption Potential energy curves for O2 dissociative adsorption on Pt/Fe(001) and Pt(001) O2 trajectories Eac on Pt = 0.16eV Pt/Fe on Pt/Fe: Nobarrier! b-h-b Pt Low Oad binding Potential energies are relative to gas phase O2 and isolated slab. O2 dissociative adsorption favors bridge-hollow-bridge (b-h-b) configuration on both systems (Pt and PtFe) – direct dissociation mechanism in agreement with experiment. Adsorbed: O-O distance 2.80Å O-Pt distance 1.30 Å TS O-O distance 1.30Å O-Pt distance 2.80 Å Bradley, J. M.; Guo, X. C.; Hopkinson, A.; King, D. A. J. Chem. Phys. 1996, 104, 11. (exp) MC Escano, H. Nakanishi, H. Kasai JPC 113 52 (2009)
Resistance Random Access Memory:RRAM ② ① A RRAMの抵抗変化の解明 HirofumiKishi D3
Design of non-precious metal fuel cell electrode materials Mohammad Kemal Agusta D3