1 / 8

SAMPLING DAN ALIASING

SAMPLING DAN ALIASING. Meet 9 Fitri Amillia , S.T., M.T. Sampling. Sampling adalah proses pengambilan sampel-sampel sinyal analog pada titik tertentu secara teratur dan berurutan . S inyal analog disampel , akan didapatkan bentuk sinyal waktu diskrit .

nasim-rich
Download Presentation

SAMPLING DAN ALIASING

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. SAMPLING DAN ALIASING Meet 9 FitriAmillia, S.T., M.T.

  2. Sampling • Sampling adalahprosespengambilansampel-sampelsinyal analog padatitiktertentusecarateraturdanberurutan. • Sinyalanalog disampel, akandidapatkanbentuksinyalwaktudiskrit. • Untukmendapatkansinyalwaktudiskrit yang mampumewakilisifatsinyalaslinya, proses sampling harusmemenuhisyaratNyquist: fs > 2 fi • dimana: fs= frekuensisinyal sampling fi= frekuensisinyalinformasiyangakandisampel

  3. Aliasing • Fenomena aliasing proses sampling akanmunculpadasinyalhasil sampling apabilaprosesfrekuensisinyal sampling tidakmemenuhi criteria diatas.

  4. Sinyalsinusoidawaktudiskrit • sinyalsinusoidawaktudiskrit yang memilikibentukpersamaanmatematikasepertiberikut: x(n) = A sin(ωn +θ) dimana: A = amplitudosinyal ω = frekuensisudut θ = faseawalsinyal • Frekuensidalamsinyalwaktudiskritmemilikisatuan radian per indek sample, danmemilikiekuivalensidengan 2πf.

  5. Program %Program PengamatanPengaruhPemilihanFrekuensi Sampling Secara Visual clear all; clc; Fs=8;%frekuensi sampling t=(0:Fs-1)/Fs;%proses normalisasi s1=sin(2*pi*t*2); subplot(211) stem(t,s1) axis([0 1 -1.2 1.2]) Fs=16;%frekuensi sampling t=(0:Fs-1)/Fs;%proses normalisasi s2=sin(2*pi*t*2); subplot(212) stem(t,s2) axis([0 1 -1.2 1.2])

  6. figure

  7. Program %Program PengamatanPengaruhPemilihanFrekuensi Sampling padaEfek Audio %coba anda rubah nilai f = 200, 300, 400, 500, 600, 700, 800, dan 900 clear all; clc; Fs=1000; t=0:1/Fs:0.25; f=400; x=sin(2*pi*f*t); sound(x,Fs)

  8. Progam %Program PengamatanEfek Aliasing pada Audio 1 % Lagugundul.m % ubahpadanilaifrekuensi sampling Fs=16000, % menjadi Fs =10000, 8000, 2000, 1000, 900, 800, 700, 600, dan 500. clear all; clc; Fs=16000; t=0:1/Fs:0.25; c=sin(2*pi*262*t); d=sin(2*pi*294*t); e=sin(2*pi*330*t); f=sin(2*pi*249*t); g=sin(2*pi*392*t); a=sin(2*pi*440*t); b=sin(2*pi*494*t); c1=sin(2*pi*523*t); nol = [zeros(size(t))]; nada1 = [c,e,c,e,f,g,g,nol,b,c1,b,c1,b,g,nol,nol]; nada2 = [c,e,c,e,f,g,g,nol,b,c1,b,c1,b,g,nol]; nada3 = [c,nol,e,nol,g,nol,f,f,g,f,e,c,f,e,c,nol]; nada4 = [c,nol,e,nol,g,nol,f,f,g,f,e,c,f,e,c]; lagu=[nada1,nada2,nada3,nada4]; sound(lagu,Fs)

More Related