450 likes | 613 Views
Background Review. Elementary functions Complex numbers Common test input signals Differential equations Laplace transform Examples properties Inverse transform Partial fraction expantion Matlab. Elementary functions. The most beautiful equation.
E N D
Background Review • Elementary functions • Complex numbers • Common test input signals • Differential equations • Laplace transform • Examples • properties • Inverse transform • Partial fraction expantion • Matlab
The most beautiful equation • It contains the 5 most important numbers: 0, 1, i, p, e. • It contains the 3 most important operations: +, *, and exponential. • It contains equal sign for equations
Elementary functions • F(t)=3sin 3t +4cos 3t • F(t)=Asin(3t-d)=Acosd sin3t –Asin d cos3t • Acos d =3 • Asin d =-4 • A2=25, A=5 • tan d =-4/3, d=-53.13o • F(t)=5sin(3t+53.13o)
Complex Numbers • X2+1=0 x=i where i2=-1 • X2+4=0, then x=2i, or 2j • If z1=x1+iy1, z2=x2+iy2 • Then z1+ z2= (x1+ x2)+i(y1 +y2) • z1 z2=(x1+iy1)(x2+iy2)=(x1x2 -y1y2) +i(x1y2 +x2y1)
Polar form of Complex Numbers • z=x+iy, let’s put x=rcosq, y= rsinq • Then z = r(cosq+i sinq) = r cisq = rq • Absolute value (modulus) r2=x2+y2 • Argument q= tan-1(y/x) • Example z=1+i
Euler Formula • z=x+iy • ez =ex+iy= ex eiy= ex (cos y+i sin y) • eix =cos x+i sin x = cis x • | eix | = sqrt(cos2 x+ sin2 x) = 1 • z=r(cosq+i sinq)=r eiq • Find e1+i • Find e-3i
In Matlab >> z1=1+2*i z1 = 1.0000 + 2.0000i >> z2=3+i*5 z2 = 3.0000 + 5.0000i >> z3=z1+z2 z3 = 4.0000 + 7.0000i >> z4=z1*z2 z4 = -7.0000 +11.0000i >> z5=z1/z2 z5 = 0.3824 + 0.0294i >> r1=abs(z1) r1 = 2.2361 >> theta1=angle(z1) theta1 = 1.1071 >> theta1=angle(z1)*180/pi theta1 = 63.4349 >> real(z1) ans = 1 >> imag(z1) ans = 2
Poles and zeros • Pole of G(s) is a value of s near which the value of G goes to infinity • Zero of G(s) is a value of s near which the value of G goes to zero.
Poles and zeros in Matlab >> s=tf(‘s’) Transfer function: s >> G=exp(-2*s)/s/(s+1) Transfer function: 1 exp(-2*s) * ----------- s^2 + s >> pole(G) ans = 0, -1 >> zero(G) ans = Empty matrix: 0-by-1
1st order differential equations • y’ + a y = 0; y(0)=C, and zero input • Solution: y(t) = Ce-at • y’ + a y = d(t); y(0)=0, input = unit impulse • Unit impulse response: h(t) = e-at • y’ + a y = f(t); y(0)=C, non zeroinput • Total response: y(t) = zero input response + zero state response = Ce-at + h(t) * f(t) • Higher order LODE: use Laplace
Laplace Transform • Definition and examples Unit Step Function u(t)
Name:____________ The single most important thing to remember is that whenever there is feedback, one should worry about __________
Laplace Transform • y”+9y=0, y(0)=0, y’(0)=2 • L(y”)=s2Y(s)-sy(0)-y’(0)= s2Y(s)-2 • L(y)=Y(s) • (s2+9)Y(s)=2 • Y(s)=2/ (s2+9) • y(t)=(2/3) sin 3t
Matlab F=2/(s^2+9) F = 2/(s^2+9) >> f=ilaplace(F) f = 2/9*9^(1/2)*sin(9^(1/2)*t) >> simplify(f) ans = 2/3*sin(3*t)
Laplace Transform • y”+2y’+5y=0, y(0)=2, y’(0)=-4 • L(y”)=s2Y(s)-sy(0)-y’(0)= s2Y(s)-2s+4 • L(y’)=sY(s)-y(0)=sY(s)-2 • L(y)=Y(s) • (s2+2s+5)Y(s)=2s • Y(s)=2s/ (s2+2s+5)=2(s+1)/[(s+1)2+22]-2/[(s+1)2+22] • y(t)= e-t(2cos 2t –sin 2t)
Matlab >> F=2*s/(s^2+2*s+5) F = 2*s/(s^2+2*s+5) >> f=ilaplace(F) f = 2*exp(-t)*cos(2*t)-exp(-t)*sin(2*t)
Laplace transform • Y”-2 y’-3 y=0, y(0)= 1, y’(0)= 7 • Y”+2 y’-8 y=0, y(0)= 1, y’(0)= 8 • Y”+2 y’-3 y=0, y(0)= 0, y’(0)= 4 • 4Y”+4 y’-3 y=0, y(0)= 8, y’(0)= 0 • Y”+2 y’+ y=0, y(0)= 1, y’(0)= -2 • Y”+4 y=0, y(0)= 1, y’(0)= 1
Y”+2 y’+ y=0, y(0)= 1, y’(0)= -2 >> A=[0 1;-1 -2]; B=[0;1]; C=[1 0]; D=0; >> x0=[1;-2]; >> t=sym('t'); >> y=C*expm(A*t)*x0 y = exp(-t)-t*exp(-t) Y”+2 y’+ y=f(t)=u(t), y(0)= 2, y’(0)= 3
Partial fraction; repeated factor But No FUN
Matlab >> [r p k]=residue(n,d) r = 1 2 p = 1 0 k = [] >> d=[1 -1 0] d = 1 -1 0 >> n=[3 -2] n = 3 -2 1/(s-1) + 2/s
Matlab >> [r p k]=residue(n,d) r = 1.5000 -1.5000 1.0000 p = 3 -3 0 k = [] >> n=[1 9 -9] n = 1 9 -9 >> d=[1 0 -9 0] d = 1 0 -9 0 1.5/(s-3)-1.5/(s+3)+1/s
Matlab >> [r p k]=residue(n,d) r = 2.0000 -3.0000 1.0000 p = 2.0000 -2.0000 1.0000 k = [] >> n=[11 -14] n = 11 -14 >> d=[1 -1 -4 4] d = 1 -1 -4 4 2/(s-2)-3/(s+2)+1/(s-1)
Matlab >> [r p k]=residue(a,b) r = 1 -1 p = -1 -1 k = [] >> b=[1 2 1] b = 1 2 1 >> a=[1 0] a = 1 0 1/(s+1)-1/(s+1)2
>> Y=(s^4-7*s^3+13*s^2+4*s-12)/s^2/(s-3)/(s^2-3*s+2) Transfer function: s^4 - 7 s^3 + 13 s^2 + 4 s - 12 ------------------------------------ s^5 - 6 s^4 + 11 s^3 - 6 s^2 >> [n,d]=tfdata(Y,'v') n = 0 1 -7 13 4 -12 d = 1 -6 11 -6 0 0 >> [r,p,k]=residue(n,d) r = 0.5000 -2.0000 -0.5000 3.0000 2.0000 p = 3.0000 2.0000 1.0000 0 0 k = [ ]